A103716 Numerators of sum_{k=1..n} 1/k^10 =: Zeta(10,n).
1, 1025, 60526249, 61978938025, 605263128567754849, 605263138567754849, 170971856382109814342232401, 175075181098169912564190119249, 10338014371627802833957102351534201, 413520574906423083987893722912609
Offset: 1
Crossrefs
Programs
-
Mathematica
s=0;lst={};Do[s+=n^1/n^11;AppendTo[lst,Numerator[s]],{n,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *) Table[ HarmonicNumber[n, 10] // Numerator, {n, 1, 10}] (* Jean-François Alcover, Dec 04 2013 *)
Formula
a(n) = numerator(sum_{k=1..n} 1/k^10).
G.f. for rationals Zeta(10, n): polylogarithm(10, x)/(1-x).
Comments