cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103739 Primes which are half the sum of 2 squares of primes.

Original entry on oeis.org

17, 29, 37, 73, 89, 97, 109, 149, 157, 193, 229, 241, 269, 277, 349, 409, 433, 541, 601, 661, 709, 769, 829, 853, 929, 937, 1009, 1021, 1069, 1109, 1117, 1129, 1249, 1321, 1409, 1429, 1489, 1549, 1609, 1669, 1753, 1789, 1801, 1873, 2029, 2089, 2161, 2221
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 28 2005

Keywords

Comments

Primes of the form x^2 + y^2, where x > y > 0, such that x-y = p and x+y = q are primes. Proof: (p^2+q^2)/2 = ((x-y)^2+(x+y)^2)/2 = x^2+y^2 so we have x = (p+q)/2 and y = (q-p)/2. - Thomas Ordowski, Sep 24 2012
All terms == 1 or 5 (mod 12). - Thomas Ordowski, Jun 28 2013
Or, primes in A143850. - Zak Seidov, Jun 06 2015

Examples

			17 is in the sequence because (3^2 + 5^2) / 2 = 17.
		

Crossrefs

Intersection of A143850 and A000040.

Programs

  • Maple
    Primes:= select(isprime,[seq(2*i+1,i=1..400)]):
    Psq:= map(`^`,Primes,2):
    M:= max(Psq):
    S:= select(t -> t <= M/2 and isprime(t),{seq(seq((Psq[i]+Psq[j])/2, j=1..i-1),i=1..nops(Psq))}):
    sort(convert(S,list)); # Robert Israel, Jun 08 2015
  • PARI
    list(lim)=my(v=List(), p2, t); lim\=1; if(lim<9, lim=9); forprime(p=3, sqrtint(2*lim-9), p2=p^2; forprime(q=3, min(sqrtint(2*lim-p2), p), if(isprime(t=(p2+q^2)/2), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 14 2017

Extensions

Corrected and extended by Walter Nissen, Jul 19 2005