cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103774 Number of ways to write n! as product of squarefree numbers.

Original entry on oeis.org

1, 1, 2, 2, 6, 10, 42, 42, 82, 204, 1196, 1556, 10324, 34668, 104948, 104964, 873540, 1309396, 11855027, 25238220, 91193575, 453628255, 5002616219, 5902762219, 21142729523, 122981607092, 189706055368, 547296181656, 7291700021313, 14330422534833, 202498591157970
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 15 2005

Keywords

Comments

a(n) = A050320(A000142(n)).
From Gus Wiseman, Aug 20 2020: (Start)
Also the number of set multipartitions (multisets of sets) of the multiset of prime factors of n!. For example, The a(2) = 1 through a(6) = 10 set multipartitions are:
{1} {12} {1}{1}{12} {1}{1}{123} {1}{1}{12}{123}
{1}{2} {1}{1}{1}{2} {1}{12}{13} {1}{12}{12}{13}
{1}{1}{1}{23} {1}{1}{1}{12}{23}
{1}{1}{2}{13} {1}{1}{1}{2}{123}
{1}{1}{3}{12} {1}{1}{2}{12}{13}
{1}{1}{1}{2}{3} {1}{1}{3}{12}{12}
{1}{1}{1}{1}{2}{23}
{1}{1}{1}{2}{2}{13}
{1}{1}{1}{2}{3}{12}
{1}{1}{1}{1}{2}{2}{3}
(End)

Examples

			n=5, 5! = 1*2*3*4*5 = 120 = 2 * 2 * 2 * 3 * 5: a(5)=#{2*2*2*3*5,2*2*2*15,2*2*6*5,2*2*30,2*2*3*10,2*6*10}=6.
		

Crossrefs

A103775 is the strict case.
A157612 is the case of superprimorials.
A001055 counts factorizations.
A045778 counts strict factorizations.
A048656 counts squarefree divisors of factorials.
A050320 counts factorizations into squarefree numbers.
A050326 counts strict factorizations into squarefree numbers.
A076716 counts factorizations of factorials.
A089259 counts set multipartitions of integer partitions.
A116540 counts normal set multipartitions.
A157612 counts strict factorizations of factorials.

Programs

  • Mathematica
    sub[w_, e_] := Block[{v=w}, v[[e]]--; v]; ric[w_, k_] := ric[w, k] = If[Max[w] == 0, 1, Block[{e, s, p = Flatten@ Position[Sign@w, 1]}, s = Select[ Prepend[#, First@p] & /@ Subsets[Rest@p], Total[1/2^#] <= k &]; Sum[ric[sub[w, e], Total[1/2^e]], {e, s}]]]; a[n_] := ric[ Sort[ Last /@ FactorInteger[n!]], 1]; Array[a, 22] (* Giovanni Resta, Sep 30 2019 *)

Extensions

a(17)-a(18) from Amiram Eldar, Sep 30 2019
a(19)-a(31) from Giovanni Resta, Sep 30 2019