A103780 Row sums of square of trinomial triangle A071675.
1, 1, 3, 9, 25, 69, 189, 519, 1428, 3930, 10812, 29742, 81816, 225070, 619156, 1703262, 4685565, 12889687, 35458707, 97544655, 268339161, 738183999, 2030697309, 5586319365, 15367609920, 42275319276, 116296719448
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,4,6,8,8,6,3,1).
Programs
-
Mathematica
CoefficientList[Series[1/(1 - x - 2*x^2 - 4*x^3 - 6*x^4 - 8*x^5 - 8*x^6 - 6*x^7 - 3*x^8 - x^9), {x,0,50}], x] (* G. C. Greubel, Mar 03 2017 *) LinearRecurrence[{1,2,4,6,8,8,6,3,1},{1,1,3,9,25,69,189,519,1428},40] (* Harvey P. Dale, Jun 14 2020 *)
-
Maxima
a(n):=sum(sum((sum(binomial(j,n-3*k+2*j)*(-1)^(j-k)*binomial(k,j),j,0,k)) *sum(binomial(j,-3*m+k+2*j)*binomial(m,j),j,0,m),k,m,n),m,0,n); /* Vladimir Kruchinin, Dec 01 2011 */
-
PARI
x='x+O('x^50); Vec(1/(1 -x -2*x^2 -4*x^3 -6*x^4 -8*x^5 -8*x^6 -6*x^7 -3*x^8 -x^9)) \\ G. C. Greubel, Mar 03 2017
Formula
G.f.: 1/(1-x-2*x^2-4*x^3-6*x^4-8*x^5-8*x^6-6*x^7-3*x^8-x^9).
a(n) = a(n-1) +2a(n-2) +4a(n-3) +6a(n-4) +8a(n-5) +8a(n-6) +6a(n-7) +3a(n-8) +a(n-9).