cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103780 Row sums of square of trinomial triangle A071675.

Original entry on oeis.org

1, 1, 3, 9, 25, 69, 189, 519, 1428, 3930, 10812, 29742, 81816, 225070, 619156, 1703262, 4685565, 12889687, 35458707, 97544655, 268339161, 738183999, 2030697309, 5586319365, 15367609920, 42275319276, 116296719448
Offset: 0

Views

Author

Paul Barry, Feb 15 2005

Keywords

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - x - 2*x^2 - 4*x^3 - 6*x^4 - 8*x^5 - 8*x^6 - 6*x^7 - 3*x^8 - x^9), {x,0,50}], x] (* G. C. Greubel, Mar 03 2017 *)
    LinearRecurrence[{1,2,4,6,8,8,6,3,1},{1,1,3,9,25,69,189,519,1428},40] (* Harvey P. Dale, Jun 14 2020 *)
  • Maxima
    a(n):=sum(sum((sum(binomial(j,n-3*k+2*j)*(-1)^(j-k)*binomial(k,j),j,0,k)) *sum(binomial(j,-3*m+k+2*j)*binomial(m,j),j,0,m),k,m,n),m,0,n); /* Vladimir Kruchinin, Dec 01 2011 */
    
  • PARI
    x='x+O('x^50); Vec(1/(1 -x -2*x^2 -4*x^3 -6*x^4 -8*x^5 -8*x^6 -6*x^7 -3*x^8 -x^9)) \\ G. C. Greubel, Mar 03 2017

Formula

G.f.: 1/(1-x-2*x^2-4*x^3-6*x^4-8*x^5-8*x^6-6*x^7-3*x^8-x^9).
a(n) = a(n-1) +2a(n-2) +4a(n-3) +6a(n-4) +8a(n-5) +8a(n-6) +6a(n-7) +3a(n-8) +a(n-9).