A103825 Choose a(n) to be the smallest number not yet used such that: a(1) = 1, a(2n) = composite, a(2n+1) = prime and partial sums are alternately prime or composite.
1, 4, 3, 9, 5, 15, 2, 8, 7, 25, 11, 49, 13, 21, 17, 33, 19, 27, 23, 39, 29, 119, 31, 77, 37, 35, 41, 51, 43, 45, 47, 55, 53, 57, 59, 91, 61, 65, 67, 87, 71, 69, 73, 93, 79, 85, 83, 95, 89, 63, 97, 81, 101, 99, 103, 75, 107, 105, 109, 141, 113, 115, 127, 125, 131, 111, 137
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # for terms before the first term > N Avail:= [$2..N]: A[1]:= 1: T:= 1: for n from 2 while assigned(A[n-1]) do for j from 1 to N+1-n do x:= Avail[j]; if (n::even and isprime(x+T) and not isprime(x)) or (n::odd and isprime(x) and not isprime(x+T)) then A[n]:= x; T:= T+x; Avail:= subsop(j=NULL, Avail); break fi od od: seq(A[i],i=1..n-2); # Robert Israel, Nov 26 2020
Extensions
Definition corrected by Zak Seidov, Feb 20 2005