cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103826 Unitary arithmetic numbers (those for which the arithmetic mean of the unitary divisors is an integer).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 75, 76, 77, 78, 79, 81, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93
Offset: 1

Views

Author

Emeric Deutsch, Feb 17 2005

Keywords

Comments

The arithmetic means of the unitary arithmetic numbers are in A103827.
From Amiram Eldar, Mar 10 2023: (Start)
Union of the odd numbers (A005408) and twice the numbers that are not the sum of 2 squares (A022544).
The asymptotic density of this sequence is 1. (End)

Examples

			12 is a unitary arithmetic number because the unitary divisors of 12 are 1,3,4 and 12 and (1+3+4+12)/4=5 is an integer.
		

Crossrefs

Programs

  • Maple
    with(numtheory):unitdiv:=proc(n) local A, k: A:={}: for k from 1 to tau(n) do if gcd(divisors(n)[k], n/divisors(n)[k])=1 then A:=A union {divisors(n)[k]} else A:=A fi od end:utau:=n->nops(unitdiv(n)):usigma:=n->add(unitdiv(n)[j],j=1..nops(unitdiv(n))): p:=proc(n) if type(usigma(n)/utau(n),integer)=true then n else fi end:seq(p(n),n=1..103);
  • Mathematica
    udiQ[n_]:=IntegerQ[Mean[Select[Divisors[n],GCD[#,n/#]==1&]]]; Select[ Range[ 100],udiQ] (* Harvey P. Dale, May 20 2012 *)
    Select[Range[100], IntegerQ[Times @@ ((1 + Power @@@ FactorInteger[#])/2)] &] (* Amiram Eldar, Jun 14 2022 *)
  • PARI
    is(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]^f[i,2]+1)%2^#f~==0 \\ Charles R Greathouse IV, Sep 01 2015