A103839 Number of permutations of (1,2,3,...,n) where each of the (n-1) adjacent pairs of elements sums to a prime.
1, 2, 2, 8, 4, 16, 24, 60, 140, 1328, 2144, 17536, 23296, 74216, 191544, 2119632, 4094976, 24223424, 45604056, 241559918, 675603568, 8723487720, 22850057800, 285146572432, 859834538938, 8276479696196, 32343039694056, 429691823372130
Offset: 1
Keywords
Examples
For n = 5, we have the 4 permutations and the sums of adjacent elements: 1,4,3,2,5 (1+4=5, 4+3=7, 3+2=5, 2+5=7) 3,4,1,2,5 (3+4=7, 4+1=5, 1+2=3, 2+5=7) 5,2,1,4,3 (5+2=7, 2+1=3, 1+4=5, 4+3=7) 5,2,3,4,1 (5+2=7, 2+3=5, 3+4=7, 4+1=5)
Programs
-
Mathematica
A103839[n_] := Count[Map[lpf, Permutations[Range[n]]], 0] lpf[x_] := Length[Select[asf[x], ! PrimeQ[#] &]]; asf[x_] := Module[{i}, Table[x[[i]] + x[[i + 1]], {i, Length[x] - 1}]]; Table[A103839[n], {n, 1, 9}] (* Robert Price, Oct 25 2018 *)
-
PARI
okperm(perm) = {for (k=1, #perm -1, if (! isprime(perm[k]+perm[k+1]), return (0));); return (1);} a(n) = {nbok = 0; for (j=1, n!, perm = numtoperm(n, j); if (okperm(perm), nbok++);); return (nbok);} \\ Michel Marcus, Apr 08 2013
Formula
For n>1, a(n) = 2 * A051239(n).
Extensions
More terms from Max Alekseyev, Jan 04 2008
a(25)-a(28) from Giovanni Resta, Apr 01 2014
Comments