A103842 Triangle read by rows: row n is binary expansion of 2^n-n, n >= 1.
1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0
Offset: 1
Examples
Table begins: 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 1
Links
- David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
- David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
Programs
-
Maple
p:=proc(n) local A,j,b: A:=convert(2^n-n,base,2): for j from 1 to nops(A) do b:=j->A[nops(A)+1-j] od: seq(b(j),j=1..nops(A)): end: for n from 1 to 15 do p(n) od; # yields sequence in triangular form # Emeric Deutsch, Apr 16 2005
-
Mathematica
Table[IntegerDigits[2^n-n,2],{n,20}]//Flatten (* Harvey P. Dale, Feb 06 2022 *)
-
PARI
tabl(nn) = for (n=1, nn, print(binary(2^n-n))); \\ Michel Marcus, Mar 01 2015
Extensions
More terms from Emeric Deutsch, Apr 16 2005
Comments