cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103883 Square array A(n,k) read by antidiagonals: coordination sequence for lattice B_n.

Original entry on oeis.org

1, 1, 8, 1, 18, 16, 1, 32, 74, 24, 1, 50, 224, 170, 32, 1, 72, 530, 768, 306, 40, 1, 98, 1072, 2562, 1856, 482, 48, 1, 128, 1946, 6968, 8130, 3680, 698, 56, 1, 162, 3264, 16394, 28320, 20082, 6432, 954, 64, 1, 200, 5154, 34624, 83442, 85992, 42130, 10304, 1250, 72
Offset: 2

Views

Author

Ralf Stephan, Feb 20 2005

Keywords

Examples

			Array, A(n, k), begins:
  1,   8,    16,     24,      32,       40,        48, ... A022144;
  1,  18,    74,    170,     306,      482,       698, ... A022145;
  1,  32,   224,    768,    1856,     3680,      6432, ... A022146;
  1,  50,   530,   2562,    8130,    20082,     42130, ... A022147;
  1,  72,  1072,   6968,   28320,    85992,    214864, ... A022148;
  1,  98,  1946,  16394,   83442,   307314,    907018, ... A022149;
  1, 128,  3264,  34624,  216448,   954880,   3301952, ... A022150;
  1, 162,  5154,  67266,  507906,  2653346,  10666146, ... A022151;
  1, 200,  7760, 122264, 1099040,  6728168,  31208560, ... A022152;
  1, 242, 11242, 210474, 2224178, 15804866,  83999962, ... A022153;
  1, 288, 15776, 346304, 4254912, 34792672, 210482016, ... A022154;
  ...
Antidiagonals, T(n, k), begin as:
  1;
  1,   8;
  1,  18,   16;
  1,  32,   74,    24;
  1,  50,  224,   170,    32;
  1,  72,  530,   768,   306,    40;
  1,  98, 1072,  2562,  1856,   482,   48;
  1, 128, 1946,  6968,  8130,  3680,  698,  56;
  1, 162, 3264, 16394, 28320, 20082, 6432, 954, 64;
		

Crossrefs

Programs

  • Magma
    A103883:= func< n,k | (&+[Binomial(n-j-1,n-k-1)*(Binomial(2*n-2*k+1,2*j) - 2*j*Binomial(n-k,j)) : j in [0..k]]) >;
    [A103883(n,k): k in [0..n-2], n in [2..14]]; // G. C. Greubel, May 24 2023
    
  • Mathematica
    offset = 2;
    T[n_, k_] := SeriesCoefficient[Sum[(Binomial[2n + 1, 2i] - 2i Binomial[n, i]) x^i, {i, 0, n}]/(1 - x)^n, {x, 0, k}];
    Table[T[n - k, k], {n, offset, 11}, {k, 0, n - offset}] // Flatten (* Jean-François Alcover, Feb 13 2019 *)
  • SageMath
    def A103883(n,k): return sum(binomial(n-j-1,n-k-1)*(binomial(2*n-2*k+1,2*j) - 2*j*binomial(n-k,j)) for j in range(k+1))
    flatten([[A103883(n,k) for k in range(n-1)] for n in range(2,15)]) # G. C. Greubel, May 24 2023

Formula

G.f. of n-th row: (Sum_{i=0..n} (C(2n+1, 2*i) - 2*i*C(n, i))*x^i)/(1-x)^n.
From G. C. Greubel, May 24 2023: (Start)
A(n, k) = Sum_{j=0..k} binomial(n+k-j-1, n-1)*(binomial(2*n+1, 2*j) - 2*j*binomial(n, j)) (array).
T(n, k) = Sum_{j=0..k} binomial(n-j-1, n-k-1)*(binomial(2*n-2*k+1, 2*j) - 2*j*binomial(n-k, j)) (antidiagonals). (End)