A103901 Mersenne primes p such that M(p) = 2^p - 1 is also a (Mersenne) prime.
3, 7, 31, 127
Offset: 1
Examples
2^2 - 1 = 3 and 2^3 - 1 = 7 are Mersenne primes, so 3 is a member.
References
- R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer-Verlag, NY, 2004, Sec. A3.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed., Oxford Univ. Press, 1954, p. 16.
- P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, NY, 1996, Chap. 2, Sec. VII.
Links
- C. K. Caldwell, Mersenne Primes: Conjectures and Unsolved Problems
- Eric Weisstein's World of Mathematics, Double Mersenne Number
- Wikipedia, Mersenne prime
Comments