A253849
Numbers k such that 2^sigma(k) - 1 is a prime.
Original entry on oeis.org
2, 4, 9, 16, 25, 64
Offset: 1
4 is in the sequence because 2^sigma(4)-1 = 2^7-1 = 127 is prime.
-
[n: n in[1..10000] | IsPrime((2^SumOfDivisors(n)) - 1)];
-
a253849[n_] := Select[Range@ n, PrimeQ[2^DivisorSigma[1, #] - 1] &]; a253849[20000] (* Michael De Vlieger, Jan 19 2015 *)
A103902
Mersenne primes p such that the Mersenne number M(p) = 2^p - 1 is composite.
Original entry on oeis.org
8191, 131071, 524287, 2147483647
Offset: 1
M(13) = 8191 is a Mersenne prime and M(1891) is composite, so 1891 is a member.
- R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer-Verlag, NY, 2004, Sec. A3.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed., Oxford Univ. Press, 1954, p. 16.
- P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, NY, 1996, Chap. 2, Sec. VII.
Original entry on oeis.org
7, 127, 2147483647, 170141183460469231731687303715884105727
Offset: 1
-
forprime(p=1, 11, if(ispseudoprime(2^p-1), print1(2^(2^p-1)-1, ", ")))
Showing 1-3 of 3 results.
Comments