A103924 Number of partitions of n into parts but with two kinds of parts of sizes 1,2,3,4 and 5.
1, 2, 5, 10, 20, 36, 64, 107, 177, 282, 443, 678, 1026, 1522, 2234, 3231, 4628, 6550, 9193, 12774, 17619, 24098, 32740, 44161, 59213, 78894, 104553, 137787, 180702, 235806, 306354, 396226, 510392, 654787, 836911, 1065734, 1352475, 1710535, 2156536, 2710318
Offset: 0
References
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), p. 90.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
with(numtheory): a:= proc(n) a(n):=`if`(n=0, 1, add(add(d*`if`(d<6, 2, 1), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Sep 14 2014
-
Mathematica
a[n_] := a[n] = If[n==0, 1, Sum[Sum[d*If[d<6, 2, 1], {d, Divisors[j]}] * a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 28 2015, after Alois P. Heinz *) nmax=60; CoefficientList[Series[Product[1/(1-x^k), {k, 1, 5}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *) Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@5], {n,0,39}] (* Robert Price, Jul 29 2020 *) T[n_, 0] := PartitionsP[n]; T[n_, m_] /; (n >= m(m+1)/2) := T[n, m] = T[n-m, m-1] + T[n-m, m]; T[, ] = 0; a[n_] := T[n+15, 5]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)
Formula
G.f.: (product(1/(1-x^k), k=1..5)^2)*product(1/(1-x^j), j=6..infty).
a(n) = sum(A000710(n-5*j), j=0..floor(n/5)), n>=0.
a(n) ~ 3*n^(3/2) * exp(Pi*sqrt(2*n/3)) / (20*sqrt(2)*Pi^5). - Vaclav Kotesovec, Aug 28 2015
Comments