cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A239829 Triangular array: T(n,k) = number of partitions of 2n - 1 that have alternating sum 2k - 1.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 7, 5, 2, 1, 12, 10, 5, 2, 1, 19, 19, 10, 5, 2, 1, 30, 33, 20, 10, 5, 2, 1, 45, 57, 36, 20, 10, 5, 2, 1, 67, 92, 64, 36, 20, 10, 5, 2, 1, 97, 147, 107, 65, 36, 20, 10, 5, 2, 1, 139, 227, 177, 110, 65, 36, 20, 10, 5, 2, 1, 195, 345, 282, 184
Offset: 1

Views

Author

Clark Kimberling, Mar 28 2014

Keywords

Comments

Suppose that p, with parts x(1) >= x(2) >= ... >= x(k), is a partition of n. Define AS(p), the alternating sum of p, by x(1) - x(2) + x(3) - ... + ((-1)^(k-1))*x(k); note that AS(p) has the same parity as n. Column 1 is given by T(n,1) = (number of partitions of 2n-1 having AS(p) = 1) = A000070(n) for n >= 1. Columns 2 and 3 are essentially A000098 and A103924, and the limiting column (after deleting initial 0's), A000712. The sum of numbers in row n is A000041(2n-1). The corresponding array for partitions into distinct parts is given by A152157 (defined as the number of partitions of 2n+1 into 2k+1 odd parts).

Examples

			First nine rows:
1
2 ... 1
4 ... 2 ... 1
7 ... 5 ... 2 ... 1
12 .. 10 .. 5 ... 2 ... 1
19 .. 19 .. 10 .. 5 ... 2 ... 1
30 .. 33 .. 20 .. 10 .. 5 ... 2 ... 1
45 .. 57 .. 36 .. 20 .. 10 .. 5 ... 2 ... 1
67 .. 92 .. 64 .. 36 .. 20 .. 10 .. 5 ... 2 ... 1
The partitions of 5 are 5, 41, 32, 311, 221, 2111, 11111, with respective alternating sums 5, 3, 1, 3, 1, 1, 1, so that row 2 of the array is 4 .. 2 .. 1.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, x^(1/2), `if`(i<1, 0,
          expand(b(n, i-1, t)+`if`(i>n, 0, b(n-i, i, -t)*x^((t*i)/2)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(2*n-1$2, 1)):
    seq(T(n), n=1..14);  # Alois P. Heinz, Mar 30 2014
  • Mathematica
    z = 15; s[w_] := s[w] = Total[Take[#, ;; ;; 2]] - Total[Take[Rest[#], ;; ;; 2]] &[w]; c[n_] := c[n] = Table[s[IntegerPartitions[n][[k]]], {k, 1, PartitionsP[n]}]; t[n_, k_] := Count[c[2 n - 1], 2 k - 1]; u = Table[t[n, k], {n, 1, z}, {k, 1, n}]
    TableForm[u]  (* A239829, array *)
    Flatten[u]    (* A239829, sequence *)
    (* Peter J. C. Moses, Mar 21 2014 *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, x^(1/2), If[i<1, 0, Expand[b[n, i-1, t] + If[i>n, 0, b[n-i, i, -t]*x^((t*i)/2)]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[2n-1, 2n-1, 1]]; Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Aug 27 2016, after Alois P. Heinz *)

A008951 Array read by columns: number of partitions of n into parts of 2 kinds.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 1, 5, 7, 2, 7, 12, 5, 11, 19, 9, 1, 15, 30, 17, 2, 22, 45, 28, 5, 30, 67, 47, 10, 42, 97, 73, 19, 1, 56, 139, 114, 33, 2, 77, 195, 170, 57, 5, 101, 272, 253, 92, 10, 135, 373, 365, 147, 20, 176, 508, 525, 227, 35, 1, 231, 684, 738, 345, 62, 2, 297
Offset: 0

Views

Author

Keywords

Comments

Fine-Riordan array S_n(m) = a(n,m) with extra row for n=0 added.
Row n of this triangle has length floor(1/2 + sqrt(2*(n+1))), n>=0. This is sequence {A002024(n+1)} = [1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,...].
Written as a triangle this becomes A103923.
a(n,m) also gives the number of partitions of n-t(m), where t(m):=A000217(m) (triangular numbers), with two kinds of parts 1,2,..m. See the column o.g.f.'s in table A103923.
In general, column m is asymptotic to exp(Pi*sqrt(2*n/3)) * 6^(m/2) * n^((m-2)/2) / (4*sqrt(3) * m! * Pi^m), equivalently to 6^(m/2) * n^(m/2) / (m! * Pi^m) * p(n), where p(n) is the partition function A000041. - Vaclav Kotesovec, Aug 28 2015

Examples

			Array begins:
m\n 0 1 2 3 4 .5 .6 .7 .8 ...
0 | 1 1 2 3 5 .7 11 15 22 ... (A000041)
1 | . 1 2 4 7 12 19 ... (A000070)
2 | . . . 1 2 .5 .9 ... (A000097)
3 | . . . . . .. .1 ... (A000098)
[1]; [1,1]; [2,2]; [3,4,1]; [5,7,2]; [7,12,5]; [11,19,9,1]...
a(3,1) = 4 because the partitions (3), (1,2) and (1^3) have q values 1,2 and 1 which sum to 4.
a(3,1) = 4 because the exponents of part 1 in the above given partitions of 3 are 0,1,3 and they sum to 4.
a(3,1) = 4 because the partitions of 3-t(1)=2 with two kinds of part 1, say 1 and 1' and one kind of part 2 are (2),(1^2), (1'^2) and (11').
		

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.

Crossrefs

The first column (m=0) gives A000041(n). Columns m=1..10 are A000070 (partial sums of partition numbers), A000097, A000098, A000710, A103924-A103929.

Programs

  • Maple
    a:= proc(n, m) option remember; `if`(n<0, 0,
          `if`(m=0, combinat[numbpart](n), a(n-m, m-1) +a(n-m, m)))
        end:
    seq(seq(a(n,m), m=0..round(sqrt(2*n+2))-1), n=0..20);  # Alois P. Heinz, Nov 16 2012
  • Mathematica
    a[n_, 0] := PartitionsP[n]; a[n_, m_] /; (n >= m*(m+1)/2) := a[n, m] = a[n-m, m-1] + a[n-m, m]; a[n_, m_] = 0; Flatten[ Table[ a[n, m], {n, 0, 18}, {m, 0, Floor[1/2 + Sqrt[2*(n+1)]] - 1}]](* Jean-François Alcover, May 02 2012, after recurrence formula *)
    DeleteCases[Flatten@Transpose@Table[ConstantArray[0, m (m + 1)/2]~Join~Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@m], {n, 0, 21 - m (m + 1)/2}] , {m, 0, 6}], 0](* Robert Price, Jul 28 2020 *)

Formula

Riordan gives formula.
a(n, m) is the sum over partitions of n of Product_{j=1..m} k(j), where k(j) is the number of parts of size j (exponent of j in a given partition of n), if m>=1. If m=0 then a(n, 0)=p(n):=A000041(n) (number of partitions of n). O is counted as a part for n=0 and only for this n.
a(n, m) is the sum over partitions of n of binomial(q(partition), m), with q the number of distinct parts of a given partition. m>=0.
a(n, m) = a(n-m, m-1) + a(n-m, m), n >= t(m):=m*(m+1)/2 = A000217(m) (triangular numbers), otherwise 0, with input a(n, 0) = p(n):=A000041(n).

Extensions

More terms from Robert G Bearden (nem636(AT)myrealbox.com), Apr 27 2004
Correction, comments and Riordan formulas from Wolfdieter Lang, Apr 28 2005

A103923 Triangle of partitions of n with parts of sizes 1,2,...,m, each of two different kinds, m>=1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 4, 2, 1, 5, 7, 5, 2, 1, 7, 12, 9, 5, 2, 1, 11, 19, 17, 10, 5, 2, 1, 15, 30, 28, 19, 10, 5, 2, 1, 22, 45, 47, 33, 20, 10, 5, 2, 1, 30, 67, 73, 57, 35, 20, 10, 5, 2, 1, 42, 97, 114, 92, 62, 36, 20, 10, 5, 2, 1, 56, 139, 170, 147, 102, 64, 36, 20, 10, 5, 2, 1, 77, 195
Offset: 0

Views

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

The corresponding Fine-Riordan triangle is A008951.
This is the array p_2(n,m) of Gupta et al. written as a triangle. p_2(n,m) is defined on p. x of this reference as the number of partitions of n into parts consisting of two varieties of each of the integers 1 to m and one variety of each larger integer. Therefore a(n,m) gives these numbers for the partitions of n-m.
a(n,m)= sum over partitions of n+t(m)-m of binomial(q(partition),m), with t(m):=A000217(m) and q the number of distinct parts of a given partition. m>=0.
a(n,m)= number of partitions of 2*n-m with exactly m odd parts.
a(n,m)= sum over partitions of n+t(m)-m of product(k[j],j=1..m), with t(m):=A000217(m) and k[j]=number of parts of size j (exponent of j in a given partition of n), if m>=1. If m=0 then a(n,0)=p(n):=A000041(n) (number of partitions of n). 0 is counted as a part for n=0 and only for this n.

Examples

			Triangle starts:
[1];
[1,1];
[2,2,1];
[3,4,2,1];
[5,7,5,2,1];
...
a(4,2)=5 from the partitions of 4-2=2 with two varieties of parts 1 and of 2, namely (2),(2'),(1^2),(1'^2) and (1,1').
a(4,2)=5 from the partitions of 4+t(2)-2=5 which have products of the exponents of parts 1 and 2: 0*0,1*0,0*1,2*1,1*2,5*0 and sum to 4.
a(4,2)=5 from the partitions of 4+t(2)-2=5 which have number of distinct parts (q values) 1,2,2,2,2,2,1. The corresponding binomial(q,2) values are 0,1,1,1,1,0 and sum to 4.
a(4,2)=5 from the partitions of 2*4-2=6 with exactly two odd parts, namely (1,5), (3^2), (1^2,4), (1,2,3) and (1^2,2^2), which are 5 in number.
		

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), pp. 90-121.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.

Crossrefs

The column sequences (without leading 0's) are, for m=0..10: A000041, A000070, A000097, A000098, A000710, A103924-A103929.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*
          `if`(d<=k, 2, 1), d=divisors(j)) *b(n-j, k), j=1..n)/n)
        end:
    A:= (n, k)-> b(n, k) -`if`(k=0, 0, b(n, k-1)):
    seq(seq(A(n, k), k=0..n), n=0..14);  # Alois P. Heinz, Sep 14 2014
  • Mathematica
    a[n_, 0] := a[n, 0] = PartitionsP[n]; a[n_, m_] /; n= m >= 0 := a[n, m] = a[n-1, m-1] + a[n-m, m]; Table[a[n, m], {n, 0, 14}, {m, 0, n}] // Flatten (* Jean-François Alcover, Dec 09 2014 *)
    Flatten@Table[Length@IntegerPartitions[n-m, All, Range@n~Join~Range@m],  {n, 0, 12}, {m, 0, n}] (* Robert Price, Jul 29 2020 *)

Formula

a(n, m) = a(n-1, m-1) + a(n-m, m), n>=m>=0, with a(n, 0)= A000041(n) (partition numbers), a(n, m)=0 if n
a(n, m) = sum(a(n-1-j*m, m-1), j=0..floor((n-m)/m)), m>=1, input a(n, 0)= A000041(n).
G.f. column m: product(1/(1-x^j), j=1..m)*P(x), with P(x)= product(1/(1-x^j), j=1..infty), the o.g.f. for the partition numbers A000041.
G.f. column m>=1: (product(1/(1-x^k), k=1..m)^2)*product(1/(1-x^j), j=(m+1)..infty). For m=0 put the first product equal to 1.

A103929 Number of partitions of n into parts but with two kinds of parts of sizes 1 to 10.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 65, 110, 185, 300, 481, 751, 1162, 1762, 2647, 3918, 5748, 8331, 11981, 17056, 24108, 33787, 47043, 65019, 89336, 121954, 165585, 223542, 300295, 401331, 533937, 707057, 932404, 1224376, 1601571, 2086851, 2709449, 3505228
Offset: 0

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

See A103923 for other combinatorial interpretations of a(n).
In general, column m of A008951 is asymptotic to exp(Pi*sqrt(2*n/3)) * 6^(m/2) * n^((m-2)/2) / (4*sqrt(3) * m! * Pi^m), equivalently to 6^(m/2) * n^(m/2) / (m! * Pi^m) * p(n), where p(n) is the partition function A000041. - Vaclav Kotesovec, Aug 28 2015

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), p. 91.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.

Crossrefs

Eleventh column (m=10) of Fine-Riordan triangle A008951 and of triangle A103923, i.e. the p_2(n, m) array of the Gupta et al. reference.
Cf. A000712 (all parts of two kinds).

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[1/(1-x^k), {k, 1, 10}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *)
    Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@10], {n,0,37}] (* Robert Price, Jul 29 2020 *)
    T[n_, 0] := PartitionsP[n];
    T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m];
    T[, ] = 0;
    a[n_] := T[n + 55, 10];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)

Formula

G.f.: (product(1/(1-x^k), k=1..10)^2)*product(1/(1-x^j), j=11..infty).
a(n)=sum(A103924(n-10*j), j=0..floor(n/10)), n>=0.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 6^5 * n^4 / (4*sqrt(3) * 10! * Pi^10). - Vaclav Kotesovec, Aug 28 2015

A103925 Number of partitions of n into parts but with two kinds of parts of sizes 1,2,3,4,5 and 6.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 65, 109, 182, 292, 463, 714, 1091, 1631, 2416, 3523, 5091, 7264, 10284, 14405, 20035, 27621, 37831, 51425, 69497, 93299, 124588, 165408, 218533, 287231, 375851, 489525, 634980, 820195, 1055444, 1352965, 1728326, 2200060, 2791516, 3530513
Offset: 0

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

See A103923 for other combinatorial interpretations of a(n).
Also the sum of binomial (D(p), 6) over partitions p of n+21, where D(p) is the number of different part sizes in p. - Emily Anible, Jun 09 2018

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), p. 90.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.

Crossrefs

Seventh column (m=6) of Fine-Riordan triangle A008951, of triangle A103923, i.e. the p_2(n, m) array of the Gupta et al. reference.
Cf. A000712 (all parts of two kinds).

Programs

  • Maple
    with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*`if`(d<7, 2, 1), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40);  # Alois P. Heinz, Sep 14 2014
  • Mathematica
    nmax=60; CoefficientList[Series[Product[1/(1-x^k), {k, 1, 6}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *)
    Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@6],  {n,0,39}] (* Robert Price, Jul 29 2020 *)
    T[n_, 0] := PartitionsP[n];
    T[n_, m_] /; (n >= m(m+1)/2) := T[n, m] = T[n-m, m-1] + T[n-m, m];
    T[, ] = 0;
    a[n_] := T[n+21, 6];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)

Formula

G.f.: (product(1/(1-x^k), k=1..6)^2)*product(1/(1-x^j), j=7..infty).
a(n) = sum(A103924(n-6*j), j=0..floor(n/6)), n>=0.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 6^3 * n^2 / (4*sqrt(3) * 6! * Pi^6) = exp(Pi*sqrt(2*n/3)) * sqrt(3) * n^2 / (40*Pi^6). - Vaclav Kotesovec, Aug 28 2015

A103926 Number of partitions of n into parts but with two kinds of parts of sizes 1 to 7.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 65, 110, 184, 297, 473, 734, 1127, 1696, 2526, 3707, 5388, 7737, 11018, 15532, 21731, 30147, 41538, 56813, 77234, 104317, 140120, 187139, 248680, 328769, 432664, 566759, 739297, 960315, 1242583, 1601645, 2057095, 2632724
Offset: 0

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

See A103923 for other combinatorial interpretations of a(n).
Also the sum of binomial (D(p), 7) over partitions p of n+28, where D(p) is the number of different part sizes in p. - Emily Anible, Jun 09 2018

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), p. 90.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.

Crossrefs

Eighth column (m=7) of Fine-Riordan triangle A008951 and of triangle A103923, i.e. the p_2(n, m) array of the Gupta et al. reference.
Cf. A000712 (all parts of two kinds).

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[1/(1-x^k), {k, 1, 7}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *)
    Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@7], {n,0,37}] (* Robert Price, Jul 29 2020 *)
    T[n_, 0] := PartitionsP[n];
    T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m];
    T[, ] = 0;
    a[n_] := T[n + 28, 7];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)

Formula

G.f.: (product(1/(1-x^k), k=1..7)^2)*product(1/(1-x^j), j=8..infty).
a(n) = sum(A103924(n-7*j), j=0..floor(n/7)), n>=0.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 6^(7/2) * n^(5/2) / (4*sqrt(3) * 7! * Pi^7). - Vaclav Kotesovec, Aug 28 2015

A103927 Number of partitions of n into parts but with two kinds of parts of sizes 1 to 8.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 65, 110, 185, 299, 478, 744, 1147, 1732, 2591, 3817, 5573, 8036, 11496, 16276, 22878, 31879, 44129, 60630, 82807, 112353, 151616, 203415, 271558, 360648, 476793, 627389, 822104, 1072668, 1394199, 1805060, 2328653, 2993372, 3835068, 4897199
Offset: 0

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

See A103923 for other combinatorial interpretations of a(n).
Also the sum of binomial (D(p), 8) over partitions p of n+36, where D(p) is the number of different part sizes in p. - Emily Anible, Jun 09 2018

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), p. 90.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.

Crossrefs

Ninth column (m=8) of Fine-Riordan triangle A008951 and of triangle A103923, i.e., the p_2(n, m) array of the Gupta et al. reference.
Cf. A000712 (all parts of two kinds).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d+
         `if`(d<9, d, 0), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 11 2018
  • Mathematica
    nmax=60; CoefficientList[Series[Product[1/(1-x^k), {k, 1, 8}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *)
    Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@8], {n,0,39}] (* Robert Price, Jul 29 2020 *)
    T[n_, 0] := PartitionsP[n];
    T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m];
    T[, ] = 0;
    a[n_] := T[n + 36, 8];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)

Formula

G.f.: (Product_{k=1..8} 1/(1-x^k))^2*Product_{j>=9} 1/(1-x^j).
a(n) = Sum_{j=0..floor(n/8)} A103924(n-8*j), n >= 0.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 6^4 * n^3 / (4*sqrt(3) * 8! * Pi^8). - Vaclav Kotesovec, Aug 28 2015

A103928 Number of partitions of n into parts but with two kinds of parts of sizes 1 to 9.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 65, 110, 185, 300, 480, 749, 1157, 1752, 2627, 3882, 5683, 8221, 11796, 16756, 23627, 33036, 45881, 63257, 86689, 118036, 159837, 215211, 288314, 384275, 509829, 673270, 885361, 1159357, 1512235, 1964897, 2543864, 3281686
Offset: 0

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

See A103923 for other combinatorial interpretations of a(n).
Also the sum of binomial (D(p), 9) over partitions p of n+45, where D(p) is the number of different part sizes in p. - Emily Anible, Jun 09 2018

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), p. 91.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.

Crossrefs

Tenth column (m=9) of Fine-Riordan triangle A008951 and of triangle A103923, i.e., the p_2(n, m) array of the Gupta et al. reference.
Cf. A000712 (all parts of two kinds).

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[1/(1-x^k), {k, 1, 9}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *)
    Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@9], {n,0,37}] (* Robert Price, Jul 29 2020 *)
    T[n_, 0] := PartitionsP[n];
    T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m];
    T[, ] = 0;
    a[n_] := T[n + 45, 9];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)

Formula

G.f.: (Product_{k=1..9} 1/(1-x^k))^2 * Product_{j>=10} 1/(1-x^j).
a(n) = Sum_{j=0..floor(n/9)} A103924(n-9*j), n >= 0.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 6^(9/2) * n^(7/2) / (4*sqrt(3) * 9! * Pi^9). - Vaclav Kotesovec, Aug 28 2015
Showing 1-8 of 8 results.