cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A103930 Numerators of squares of harmonic numbers A001008/A002805.

Original entry on oeis.org

1, 9, 121, 625, 18769, 2401, 131769, 579121, 50822641, 54479161, 7007531521, 7399612441, 1313299956049, 1372958223289, 1429834803049, 5936819760481, 1775966959381729, 203755669038601, 75787776947048401, 3117562300468225
Offset: 1

Views

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

The corresponding denominators are given in A103931.

Programs

Formula

G.f.: -((d^3/dx^3)((log(1-x))^3))/3 + dilog(1-x)/(1-x) = ((log(1-x)^2) + dilog(1-x))/(1-x) with dilog(1-x)=polylog(2, x).
First differences give A103932(n)/A103933(n).
a(n) = numerator(H(n)^2), with the harmonic numbers H(n) = A001008(n)/A002805(n), n >= 1.

A103932 Numerators of first difference of squares of harmonic numbers.

Original entry on oeis.org

1, 5, 10, 47, 131, 71, 353, 1487, 6989, 1451, 82451, 42433, 1132133, 1158863, 236749, 4828073, 41781863, 42482563, 273253759, 277235737, 56204647, 18975625, 441730115, 670193263, 33874048171, 34224132367, 311048966203, 313970420453
Offset: 1

Views

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

The corresponding denominators are given in A103933.
h(n+1) + h(n) = (n+1)*(h(n+1)^2 - h(n)^2), where h(n) is the n-th harmonic number. - Gary Detlefs, May 25 2012

Programs

  • Maple
    H:= Vector(51):
    for i from 2 to 51 do H[i]:= H[i-1]+1/(i-1) od:
    HS:= map(t -> t^2, H):
    convert(map(numer, HS[2..-1]-HS[1..-2]),list); # Robert Israel, Sep 27 2023
  • Mathematica
    Array[ HarmonicNumber[#]^2&, 29, 0] // Differences // Numerator (* Jean-François Alcover, Jul 09 2013 *)

Formula

a(n) = numerator(r(n)), with the rationals r(n) = H(n)^2 - H(n-1)^2 where H(n) = A001008(n)/A002805(n), n >= 1, H(0):=0.
G.f. for r(n): (log(1-x))^2 + dilog(1-x) where dilog(1-x) = polylog(2, x).
a(n) = numerator(h(n) + h(n-1)), where h(n) is the n-th harmonic number. - Gary Detlefs, May 25 2012
Showing 1-2 of 2 results.