cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103937 Number of unrooted n-edge maps in the plane (planar map with a distinguished outside face).

Original entry on oeis.org

1, 2, 6, 26, 150, 1032, 8074, 67086, 586752, 5317226, 49592424, 473357994, 4606116310, 45554761836, 456848968518, 4637014782748, 47563495004742, 492422043299964, 5140194991046122, 54053208147441474, 572191817441284272, 6093471300213162072, 65245904156725935906
Offset: 0

Views

Author

Valery A. Liskovets, Mar 17 2005

Keywords

References

  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Antidiagonal sums of A380240.

Programs

  • Mathematica
    a[n_] := (1/(2n)) (3^n Binomial[2n, n]/(n+1) + Sum[Boole[0Jean-François Alcover, Aug 28 2019 *)
  • PARI
    a(n) = {if(n==0, 1, (3^n*binomial(2*n,n)/(n+1) + sumdiv(n, k, if(kAndrew Howroyd, Jan 22 2025

Formula

a(n)=(1/(2n))[3^n*binomial(2n, n)/(n+1) +sum_{0A000010, q(n)=0 if n is even and q(n)=3^((n-1)/2)binomial(n-1, (n-1)/2)/(n+1) if n is odd.

Extensions

a(0)=1 prepended by Andrew Howroyd, Jan 21 2025