A103938 Number of rooted non-separable n-edge maps in the plane (planar with a distinguished outside face).
3, 2, 5, 18, 77, 364, 1836, 9690, 52877, 296010, 1690845, 9817080, 57769740, 343806368, 2065802056, 12515350122, 76367432013, 468922828150, 2895381678735, 17966214519330, 111977263221285, 700704492237540, 4400559613086000, 27727270719559320, 175230257041962252
Offset: 1
References
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
Links
- V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., 36, No.4 (2006), 364-387.
Programs
-
Mathematica
a[n_] := (n+2)(3(n-1))!/((2n-1)! n!); Array[a, 30] (* Jean-François Alcover, Aug 29 2019 *)
Formula
a(n) = (n+2)*A000139(n)/2.
From Peter Bala, Feb 07 2022: (Start)
a(n) = (3*n+6)*(3*n-4)*(3*n-5)/(n*(2*n-1)*(2*n+2))*a(n-1).
O.g.f.: A(x) = x*T(x)*(4 - T(x)), where T(x) = 1 + x*T(x)^3 is the g.f. of A001764. (End)
Extensions
More terms from Jean-François Alcover, Aug 29 2019