A103942 Number of unrooted n-edge isthmusless maps in the plane (planar with a distinguished outside face).
1, 1, 3, 9, 38, 187, 1120, 7083, 47990, 337676, 2455517, 18310155, 139447034, 1080773098, 8502896424, 67763884363, 546147639926, 4445389286380, 36501274080076, 302060508150976, 2517213486505592, 21110062391001119, 178052027949519768, 1509631210682469661, 12860805940582898474
Offset: 0
References
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., 36, No.4 (2006), 364-387.
Programs
-
Mathematica
a[n_] := (1/(2n)) ((5n^2 + 13n + 2) Binomial[4n, n]/((n+1)(3n+1)(3n+2)) + Sum[Boole[0 < k < n] EulerPhi[n/k] Binomial[4k, k], {k, Divisors[n]}] + q[n]); q[n_] := If[EvenQ[n], 0, (n-1) Binomial[2n, (n-1)/2]]/(n+1); Array[a, 20] (* Jean-François Alcover, Sep 01 2019 *)
-
PARI
a(n) = {if(n==0, 1, (sumdiv(n, d, if(d
Andrew Howroyd, Mar 28 2021
Formula
For n > 0, a(n) = (1/(2n))*[(5n^2+13n+2)*binomial(4n, n)/((n+1)(3n+1)(3n+2)) + Sum_{0A000010), q(n)=0 if n is even and q(n)=(n-1)*binomial(2n, (n-1)/2)/(n+1) if n is odd.
Extensions
a(0)=1 prepended and terms a(21) and beyond from Andrew Howroyd, Mar 28 2021