A103946 Indices of icosahedral numbers (A006564) which are semiprimes.
37, 61, 157, 193, 229, 313, 373, 397, 409, 433, 457, 601, 613, 673, 877, 997, 1009, 1321, 1429, 1453, 1489, 1549, 1657, 1741, 1777, 1861, 2017, 2293, 2377, 2557, 2677, 2689, 2713, 2749, 2797, 2857, 2917, 2953, 3109, 3169, 3181, 3361, 3433, 3517, 4021
Offset: 1
Examples
a(69) = 7333 because the 69th icosahedral number to be a semiprime is A006564(7333) = 7333 * (5*73332 - 5*7333 + 2)/2 = 985657062703 = 7333 * 134413891, which is a term of A001358, a semiprime because both 7333 and 134413891 are primes.
References
- J. H. Conway and R. K. Guy, The Book of Numbers, New York, Springer-Verlag, p. 50, 1996.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
- Eric Weisstein's World of Mathematics, Semiprime.
Programs
-
Mathematica
Select[ Prime[ Range[ 557]], PrimeQ[(5#^2 - 5# + 2)/2] &] (* Robert G. Wilson v, Feb 21 2005 *)
-
PARI
isok(n) = bigomega(n*(5*n^2 -5*n + 2)/2) == 2; \\ Michel Marcus, Dec 14 2015
Formula
Extensions
Edited and extended by Robert G. Wilson v, Feb 21 2005