cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103961 Least k such that 2*n*k - 1 is a prime.

Original entry on oeis.org

2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 4, 3, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 3, 2, 1, 3, 3, 1, 1, 2, 2, 1, 2, 1, 1, 2, 3, 1, 2, 1, 3, 3, 1, 4, 3, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 3, 3, 2, 4, 5, 2, 1, 3, 1, 3, 2, 1, 1, 2, 3, 7, 3, 1, 1, 2, 2, 1, 3, 4, 1, 2, 1, 3, 5, 1, 7, 8, 1, 1, 2, 3, 3, 2, 1, 1, 3, 1, 1, 5, 5, 3, 5, 2
Offset: 1

Views

Author

Lei Zhou, Feb 23 2005

Keywords

Comments

Question: Is the sequence unbounded (like A016014)? - Dmitry Kamenetsky, Oct 26 2016
Answer: Yes. Essentially the same argument works. To get n such that a(n) > K, take distinct odd primes p_k, k=1..K with p_k not dividing k, and take n such that n == (2*k)^(-1) mod p_k and 2*k*n-1 > p_k for k=1..K. - Robert Israel, Oct 27 2016

Examples

			2*1*2-1 = 3, so a(1) = 2;
2*5*2-1 = 19, so a(5) = 2.
		

Crossrefs

Cf. A016014.

Programs

  • Mathematica
    Do[k = 1; cp = n*k - 1; While[ ! PrimeQ[cp], k++; cp = n*k - 1]; Print[k], {n, 2, 400, 2}]
    lkp[n_]:=Module[{k=1},While[!PrimeQ[2n*k-1],k++];k]; Array[lkp,120] (* Harvey P. Dale, Nov 13 2020 *)
  • PARI
    a(n) = {my(k=1); while (!isprime(2*n*k-1), k++); k;} \\ Michel Marcus, Oct 27 2016