cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103997 Square array T(M,N) read by antidiagonals: number of dimer tilings of a 2*M X 2*N Moebius strip.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 11, 7, 1, 1, 41, 71, 18, 1, 1, 153, 769, 539, 47, 1, 1, 571, 8449, 17753, 4271, 123, 1, 1, 2131, 93127, 603126, 434657, 34276, 322, 1, 1, 7953, 1027207, 20721019, 46069729, 10894561, 276119, 843, 1, 1, 29681, 11332097, 714790675, 4974089647, 3625549353, 275770321, 2226851, 2207, 1
Offset: 0

Views

Author

Ralf Stephan, Feb 26 2005

Keywords

Examples

			Array begins:
  1,   1,     1,        1,          1,             1,               1,
  1,   3,     7,       18,         47,           123,             322,
  1,  11,    71,      539,       4271,         34276,          276119,
  1,  41,   769,    17753,     434657,      10894561,       275770321,
  1, 153,  8449,   603126,   46069729,    3625549353,    289625349454,
  1, 571, 93127, 20721019, 4974089647, 1234496016491, 312007855309063,
  ...
		

Crossrefs

Rows include A005248, A103998.
Columns 1..7 give A001835(n+1), A334135, A334179, A334180, A334181, A334182, A334183.
Main diagonal gives A334124.

Programs

  • Mathematica
    T[M_, N_] := Product[4Sin[(4n-1)Pi/(4N)]^2 + 4Cos[m Pi/(2M+1)]^2, {n, 1, N}, {m, 1, M}];
    Table[T[M - N, N] // Round, {M, 0, 9}, {N, 0, M}] // Flatten (* Jean-François Alcover, Dec 03 2018 *)

Formula

T(M, N) = Product_{m=1..M} (Product_{n=1..N} 4*sin(Pi*(4*n-1)/(4*N))^2 + 4*cos(Pi*m/(2*M + 1))^2).
For k > 0, T(n,k) = 2^n * sqrt(Resultant(U_{2*n}(x/2), T_{2*k}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - Seiichi Manyama, Apr 15 2020