cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A102354 a(n) is the number of ways n can be written as k^2 * j, 0 < j <= k.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Leroy Quet, Feb 21 2005

Keywords

Comments

Sum_{n>0} a(n)/n = 2*zeta(3). See A152648.

Examples

			a(18) = 1 because 18 = k^2 * j, j <= k, in one way: k=3, j=2.
		

Crossrefs

Programs

  • Mathematica
    t = Sort[ Flatten[ Table[k^2*j, {k, 11}, {j, k}]]]; Table[ Count[t, n], {n, 105}] (* Robert G. Wilson v, Feb 22 2005 *)
  • PARI
    A102354(n) = sumdiv(n,d,(issquare(d) && (sqrtint(d) >= (n/d)))); \\ Antti Karttunen, Aug 27 2017

Formula

a(n) >= A102448(n). - Antti Karttunen, Aug 27 2017

Extensions

More terms from Robert G. Wilson v, Feb 22 2005

A104021 Numbers that can be represented as k^2*j with 0 < j <= k and gcd(k, j) = 1.

Original entry on oeis.org

4, 9, 16, 18, 25, 36, 48, 49, 50, 64, 75, 81, 98, 100, 121, 144, 147, 162, 169, 180, 192, 196, 225, 242, 245, 256, 289, 294, 300, 320, 324, 338, 361, 363, 400, 405, 441, 448, 450, 484, 507, 529, 567, 576, 578, 588, 605, 625, 648, 676, 700, 720, 722, 726, 729
Offset: 1

Views

Author

Leroy Quet and Robert G. Wilson v, Feb 24 2005

Keywords

Comments

Essentially the same as A102646. - Georg Fischer, Oct 07 2018

Crossrefs

Programs

  • Mathematica
    Take[ Union[ Flatten[ Table[ If[ GCD[k, j] == 1, k^2*j, {}], {k, 27}, {j, k - 1}]]], 55]

A104022 Numbers that have more than one way of being written as k^2*j, 0 < j <= k.

Original entry on oeis.org

64, 100, 144, 196, 256, 324, 400, 484, 512, 576, 648, 676, 729, 784, 800, 900, 968, 1024, 1089, 1152, 1156, 1296, 1352, 1444, 1521, 1568, 1600, 1728, 1764, 1800, 1936, 2025, 2028, 2048, 2116, 2304, 2312, 2352, 2500, 2592, 2601, 2700, 2704, 2888, 2916
Offset: 1

Views

Author

Leroy Quet and Robert G. Wilson v, Feb 23 2005

Keywords

Crossrefs

Programs

  • Mathematica
    t = Sort[ Flatten[ Table[k^2*j, {k, 55}, {j, k}]]]; u = Table[ Count[t, n], {n, 3000}]; Select[ Range[3000], u[[ # ]] > 1 &]

A104024 Least number k which can be written as k^2 * j, 0 < j <= k in n ways.

Original entry on oeis.org

2, 1, 64, 900, 5184, 32400, 57600, 176400, 705600, 1166400, 3240000, 6350400, 14288400, 37454400, 25401600, 87609600
Offset: 0

Views

Author

Leroy Quet and Robert G. Wilson v, Feb 23 2005

Keywords

Crossrefs

Programs

  • Mathematica
    t = Sort[ Flatten[ Table[n = k^2*j; If[n < 10^7, n, {}], {k, 10000}, {j, k}]]]; l = Length[t]; t[[Select[ Range[l - 11], t[[ # ]] == t[[ # + 11]] &]]]

A104026 Numbers that can be represented as k^2*j, 0 < j <= k but not if gcd(k, j) = 1.

Original entry on oeis.org

32, 72, 108, 128, 200, 243, 288, 384, 392, 432, 486, 500, 512, 600, 675, 800, 864, 972, 1125, 1152, 1176, 1323, 1350, 1372, 1440, 1536, 1568, 1728, 1944, 1960, 2000, 2048, 2187, 2250, 2400, 2560, 2592, 2646, 2700, 2904, 3087, 3125, 3200, 3240, 3267, 3380
Offset: 1

Views

Author

Leroy Quet and Robert G. Wilson v, Feb 25 2005

Keywords

Comments

The complement of A104020 and A104021.

Examples

			32 is in the list because 32 = 4^2*2 but gcd(4,2) = 2.
		

Crossrefs

Programs

  • Mathematica
    A104020 = Take[Union[Flatten[Table[k^2 * j, {k, 70}, {j, k - 1}]]], 200]; A104021 = Take[Union[Flatten[Table[If[GCD[k, j] == 1, k^2 * j, {}], {k, 70}, {j, k - 1}]]], 150]; Complement[A104020, A104021]
Showing 1-5 of 5 results.