cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A102448 a(n) is the number of ways to write n = k^2 * j, j <= k, gcd(k,j) = 1, where j and k are positive integers.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Leroy Quet, Feb 23 2005

Keywords

Comments

Sum_{n>0} a(n)/n = 2.

Examples

			a(18) = 1 because 18 = k^2 * j, j <= k, gcd(k,j)=1, in one way: k=3, j=2.
		

Crossrefs

Programs

  • Mathematica
    t = Sort[ Flatten[ Table[ If[ GCD[j, k] == 1, k^2*j, {}], {k, 11}, {j, k}]]]; Table[ Count[t, n], {n, 105}] (* Robert G. Wilson v, Feb 25 2005 *)
  • PARI
    A102448(n) = sumdiv(n,d,((1==gcd(d,(n/d))) && issquare(d) && (sqrtint(d) >= (n/d)))); \\ Antti Karttunen, Aug 27 2017

Formula

a(n) <= A102354(n). - Antti Karttunen, Aug 27 2017

Extensions

More terms from Robert G. Wilson v, Feb 24 2005

A104020 Numbers that can be represented as k^2*j, 0 < j <= k.

Original entry on oeis.org

4, 9, 16, 18, 25, 32, 36, 48, 49, 50, 64, 72, 75, 81, 98, 100, 108, 121, 128, 144, 147, 162, 169, 180, 192, 196, 200, 225, 242, 243, 245, 256, 288, 289, 294, 300, 320, 324, 338, 361, 363, 384, 392, 400, 405, 432, 441, 448, 450, 484, 486, 500, 507, 512, 529, 567
Offset: 1

Views

Author

Leroy Quet and Robert G. Wilson v, Feb 24 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Take[ Union[ Flatten[ Table[ k^2*j, {k, 25}, {j, k - 1}]]], 56]

A104023 Numbers that have more than one way of being written as k^2*j with 0 < j <= k and gcd(k, j) = 1.

Original entry on oeis.org

100, 196, 324, 484, 676, 900, 1089, 1156, 1444, 1521, 1764, 2028, 2116, 2304, 2500, 2601, 2916, 3249, 3364, 3468, 3600, 3844, 4332, 4356, 4624, 4761, 4900, 5476, 5625, 5776, 6084, 6348, 6498, 6724, 7056, 7396, 7500, 7569, 8100, 8464, 8649, 8820, 8836
Offset: 1

Views

Author

Leroy Quet and Robert G. Wilson v, Feb 24 2005

Keywords

Crossrefs

Programs

  • Mathematica
    t = Sort[ Flatten[ Table[ If[ GCD[k, j] == 1, k^2*j, {}], {k, 1000}, {j, k}]]]; u = Table[ Count[t, n], {n, 9215}]; Select[ Range[9215], u[[ # ]] > 1 &]

A104026 Numbers that can be represented as k^2*j, 0 < j <= k but not if gcd(k, j) = 1.

Original entry on oeis.org

32, 72, 108, 128, 200, 243, 288, 384, 392, 432, 486, 500, 512, 600, 675, 800, 864, 972, 1125, 1152, 1176, 1323, 1350, 1372, 1440, 1536, 1568, 1728, 1944, 1960, 2000, 2048, 2187, 2250, 2400, 2560, 2592, 2646, 2700, 2904, 3087, 3125, 3200, 3240, 3267, 3380
Offset: 1

Views

Author

Leroy Quet and Robert G. Wilson v, Feb 25 2005

Keywords

Comments

The complement of A104020 and A104021.

Examples

			32 is in the list because 32 = 4^2*2 but gcd(4,2) = 2.
		

Crossrefs

Programs

  • Mathematica
    A104020 = Take[Union[Flatten[Table[k^2 * j, {k, 70}, {j, k - 1}]]], 200]; A104021 = Take[Union[Flatten[Table[If[GCD[k, j] == 1, k^2 * j, {}], {k, 70}, {j, k - 1}]]], 150]; Complement[A104020, A104021]

A104025 Least number k that can be written as k^2 * j with 0 < j <= k and gcd(k, j) = 1 in n ways.

Original entry on oeis.org

2, 1, 100, 900, 44100, 108900, 1232100, 11492100, 5336100, 12744900, 97416900
Offset: 0

Views

Author

Leroy Quet and Robert G. Wilson v, Feb 23 2005

Keywords

Crossrefs

Programs

  • Mathematica
    t = Sort[ Flatten[ Table[n = k^2*j; If[ GCD[k, j] == 1 && 10^5 < n < 10^8, n, {}], {k, 15000}, {j, k}]]]; l = Length[t]; t[[Select[ Range[l - 11], t[[ # ]] == t[[ # + 9]] &]]]
Showing 1-5 of 5 results.