cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A102354 a(n) is the number of ways n can be written as k^2 * j, 0 < j <= k.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Leroy Quet, Feb 21 2005

Keywords

Comments

Sum_{n>0} a(n)/n = 2*zeta(3). See A152648.

Examples

			a(18) = 1 because 18 = k^2 * j, j <= k, in one way: k=3, j=2.
		

Crossrefs

Programs

  • Mathematica
    t = Sort[ Flatten[ Table[k^2*j, {k, 11}, {j, k}]]]; Table[ Count[t, n], {n, 105}] (* Robert G. Wilson v, Feb 22 2005 *)
  • PARI
    A102354(n) = sumdiv(n,d,(issquare(d) && (sqrtint(d) >= (n/d)))); \\ Antti Karttunen, Aug 27 2017

Formula

a(n) >= A102448(n). - Antti Karttunen, Aug 27 2017

Extensions

More terms from Robert G. Wilson v, Feb 22 2005

A104021 Numbers that can be represented as k^2*j with 0 < j <= k and gcd(k, j) = 1.

Original entry on oeis.org

4, 9, 16, 18, 25, 36, 48, 49, 50, 64, 75, 81, 98, 100, 121, 144, 147, 162, 169, 180, 192, 196, 225, 242, 245, 256, 289, 294, 300, 320, 324, 338, 361, 363, 400, 405, 441, 448, 450, 484, 507, 529, 567, 576, 578, 588, 605, 625, 648, 676, 700, 720, 722, 726, 729
Offset: 1

Views

Author

Leroy Quet and Robert G. Wilson v, Feb 24 2005

Keywords

Comments

Essentially the same as A102646. - Georg Fischer, Oct 07 2018

Crossrefs

Programs

  • Mathematica
    Take[ Union[ Flatten[ Table[ If[ GCD[k, j] == 1, k^2*j, {}], {k, 27}, {j, k - 1}]]], 55]

A104023 Numbers that have more than one way of being written as k^2*j with 0 < j <= k and gcd(k, j) = 1.

Original entry on oeis.org

100, 196, 324, 484, 676, 900, 1089, 1156, 1444, 1521, 1764, 2028, 2116, 2304, 2500, 2601, 2916, 3249, 3364, 3468, 3600, 3844, 4332, 4356, 4624, 4761, 4900, 5476, 5625, 5776, 6084, 6348, 6498, 6724, 7056, 7396, 7500, 7569, 8100, 8464, 8649, 8820, 8836
Offset: 1

Views

Author

Leroy Quet and Robert G. Wilson v, Feb 24 2005

Keywords

Crossrefs

Programs

  • Mathematica
    t = Sort[ Flatten[ Table[ If[ GCD[k, j] == 1, k^2*j, {}], {k, 1000}, {j, k}]]]; u = Table[ Count[t, n], {n, 9215}]; Select[ Range[9215], u[[ # ]] > 1 &]

A102646 Numbers of form j k^2 with 1 <= j <= k, gcd(j,k) = 1.

Original entry on oeis.org

1, 4, 9, 16, 18, 25, 36, 48, 49, 50, 64, 75, 81, 98, 100, 121, 144, 147, 162, 169, 180, 192, 196, 225, 242, 245, 256, 289, 294, 300, 320, 324, 338, 361, 363, 400, 405, 441, 448, 450, 484, 507, 529, 567, 576, 578, 588, 605, 625, 648, 676, 700, 720, 722, 726, 729
Offset: 1

Views

Author

Leroy Quet, Feb 25 2005

Keywords

Comments

Numbers n such that A102448(n) >= 1.
All positive squares x^2 are in the sequence with j = 1, k = x.

Examples

			180 is in the sequence with j = 5, k = 6.
		

Crossrefs

Cf. A102448.

Programs

  • PARI
    is(n) = {my(f = factor(n), podd = 1, peven = 1); for(i = 1, #f~, if(bittest(f[i, 2], 0), podd *= f[i, 1]^f[i, 2] , peven *= f[i, 1]^(f[i, 2] >> 1) ) ); podd <= peven } \\ David A. Corneth, Nov 11 2019

Extensions

Edited by David W. Wilson, Sep 03 2005
Showing 1-4 of 4 results.