A104035 Triangle T(n,k), 0 <= k <= n, read by rows, defined by T(0,0) = 1; T(0,k) = 0 if k>0 or if k<0; T(n,k) = k*T(n-1,k-1) + (k+1)*T(n-1,k+1).
1, 0, 1, 1, 0, 2, 0, 5, 0, 6, 5, 0, 28, 0, 24, 0, 61, 0, 180, 0, 120, 61, 0, 662, 0, 1320, 0, 720, 0, 1385, 0, 7266, 0, 10920, 0, 5040, 1385, 0, 24568, 0, 83664, 0, 100800, 0, 40320, 0, 50521, 0, 408360, 0, 1023120, 0, 1028160, 0, 362880, 50521, 0, 1326122, 0, 6749040
Offset: 0
Examples
The polynomials Q_0(u) through Q_6(u) (with exponents in decreasing order) are: 1 u 2*u^2 + 1 6*u^3 + 5*u 24*u^4 + 28*u^2 + 5 120*u^5 + 180*u^3 + 61*u 720*u^6 + 1320*u^4 + 662*u^2 + 61 Triangle begins: 1 0 1 1 0 2 0 5 0 6 5 0 28 0 24 0 61 0 180 0 120 61 0 662 0 1320 0 720 0 1385 0 7266 0 10920 0 5040 1385 0 24568 0 83664 0 100800 0 40320 0 50521 0 408360 0 1023120 0 1028160 0 362880 50521 0 1326122 0 6749040 0 13335840 0 11491200 0 3628800 0 2702765 0 30974526 0 113760240 0 185280480 0 139708800 0 39916800 2702765 0 98329108 0 692699304 0 1979524800 0 2739623040 0 1836172800 0 479001600 Examples of sign change statistic sc on snakes of type S(n;0) = = = = = = = = = = = = = = = = = = = = = = .....Snakes....# sign changes sc.......u^sc = = = = = = = = = = = = = = = = = = = = = = n=2 ...0 1 -2 3...........2.................u^2 ...0 2 1 3...........0.................1 ...0 2 -1 3...........2.................u^2 yields Q_2(u) = 2*u^2 + 1. n=3 ...0 1 -2 3 -4.......3.................u^3 ...0 1 -3 2 -4.......3.................u^3 ...0 1 -3 -2 -4.......1.................u ...0 2 1 3 -4.......1.................u ...0 2 -1 3 -4.......3.................u^3 ...0 2 -3 1 -4.......3.................u^3 ...0 2 -3 -2 -4.......1.................u ...0 3 1 2 -4.......1.................u ...0 3 -1 2 -4.......3.................u^3 ...0 3 -2 1 -4.......3.................u^3 ...0 3 -2 -1 -4.......1.................u yields Q_3(u) = 6*u^3 + 5*u.
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, p. 287.
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see pp. 445 and 469.
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- K. Boyadzhiev, Derivative Polynomials for tanh, tan, sech and sec in Explicit Form, arXiv:0903.0117 [math.CA], 2009-2010.
- M.-P. Grosset and A. P. Veselov, Bernoulli numbers and solitons, arXiv:math/0503175 [math.GM], 2005.
- Gordon Haigh, A "natural" approach to Pick's theorem, Math. Gaz. 64 (1980), no. 429, 173-180.
- Michael E. Hoffman, Derivative polynomials for tangent and secant, Amer. Math. Monthly, 102 (1995), 23-30.
- Michael E. Hoffman, Derivative Polynomials, Euler Polynomials, and Associated Integer Sequences, The Electronic Journal of Combinatorics, Volume 6.1 (1999): Research paper R21, 13 p.
- M. Josuat-Vergès, Enumeration of snakes and cycle-alternating permutations, arXiv:1011.0929 [math.CO], 2010.
- Donald E. Knuth and Thomas J. Buckholtz, Computation of tangent, Euler and Bernoulli numbers, Math. Comp. 21 1967 663-688.
Crossrefs
Programs
-
Haskell
a104035 n k = a104035_tabl !! n !! k a104035_row n = a104035_tabl !! n a104035_tabl = iterate f [1] where f xs = zipWith (+) (zipWith (*) [1..] (tail xs) ++ [0,0]) ([0] ++ zipWith (*) [1..] xs) -- Reinhard Zumkeller, Apr 27 2014
-
Mathematica
nmax = 10; t[n_, k_] := t[n, k] = k*t[n-1, k-1] + (k+1)*t[n-1, k+1]; t[0, 0] = 1; t[0, ] = 0; Flatten[ Table[t[n, k], {n, 0, nmax}, {k, 0, n}]] (* _Jean-François Alcover, Nov 14 2011 *)
Formula
T(n, n) = n!; T(n, 0) = 0 if n = 2m + 1; T(n, 0) = A000364(m) if n = 2m.
Sum_{k>=0} T(m, k)*T(n, k) = T(m+n, 0).
Sum_{k>=0} T(n, k) = A001586(n): Springer numbers.
G.f.: Sum_{n >= 0} Q_n(u)*t^n/n! = 1/(cos t - u sin t).
From Peter Bala: (Start)
RECURRENCE RELATION
For n>=0,
(1)... Q_(n+1)(u) = d/du Q_n(u) + u*d/du(u*Q_n(u))
... = (1+u^2)*d/du Q_n(u) + u*Q_n(u),
with starting condition Q_0(u) = 1. Compare with Formula (4) of A186492.
RELATION WITH TYPE B EULERIAN NUMBERS
(2)... Q_n(u) = ((u+i)/2)^n*B(n,(u-i)/(u+i)), where i = sqrt(-1) and
[B(n,u)]n>=0 = [1,1+u,1+6*u+u^2,1+23*u+23*u^2+u^3,...] is the sequence of type B Eulerian polynomials (with a factor of u removed) - see A060187.
(End)
T(n,0) = abs(A122045(n)). - Reinhard Zumkeller, Apr 27 2014
Extensions
Entry revised by N. J. A. Sloane, Nov 06 2009
Comments