A104040 Triangular matrix T, read by rows, such that row n equals the absolute values of column (n+1) in the matrix inverse T^-1 (with extrapolated zeros): T(n,k) = -Sum_{j=1..[n+1/2]} (-1)^j*T(n-j+1,n-2*j+1)*T(n-j,k) with T(n,n)=1 (n>=0) and T(n,n-1)=n (n>=1).
1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 8, 8, 8, 4, 1, 16, 16, 20, 12, 5, 1, 32, 32, 48, 32, 18, 6, 1, 64, 64, 112, 80, 56, 24, 7, 1, 128, 128, 256, 192, 160, 80, 32, 8, 1, 256, 256, 576, 448, 432, 240, 120, 40, 9, 1, 512, 512, 1280, 1024, 1120, 672, 400, 160, 50, 10, 1, 1024, 1024, 2816
Offset: 0
Examples
Rows of T begin: 1; 1,1; 2,2,1; 4,4,3,1; 8,8,8,4,1; 16,16,20,12,5,1; 32,32,48,32,18,6,1; 64,64,112,80,56,24,7,1; 128,128,256,192,160,80,32,8,1; ... The matrix inverse T^-1 equals triangle A104041: 1; -1,1; 0,-2,1; 0,2,-3,1; 0,0,4,-4,1; 0,0,-4,8,-5,1; 0,0,0,-8,12,-6,1; 0,0,0,8,-20,18,-7,1; ... the columns of T^-1 equal rows of T in absolute value.
Programs
-
PARI
T(n,k)=if(n
-
PARI
T(n,k)=if(n
1 && k>1,T(n-2,k-2))))) -
PARI
T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1-X+X*Y)/(1-2*X-X^2*Y^2),n,x),k,y)
Formula
G.f.: A(x, y) = (1-x+x*y)/(1-2*x-x^2*y^2). T(n, k) = 2*T(n-1, k) + T(n-2, k-2) (n>=k>=2) with T(0, 0)=T(1, 0)=T(1, 1)=1.
Comments