cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104040 Triangular matrix T, read by rows, such that row n equals the absolute values of column (n+1) in the matrix inverse T^-1 (with extrapolated zeros): T(n,k) = -Sum_{j=1..[n+1/2]} (-1)^j*T(n-j+1,n-2*j+1)*T(n-j,k) with T(n,n)=1 (n>=0) and T(n,n-1)=n (n>=1).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 8, 8, 8, 4, 1, 16, 16, 20, 12, 5, 1, 32, 32, 48, 32, 18, 6, 1, 64, 64, 112, 80, 56, 24, 7, 1, 128, 128, 256, 192, 160, 80, 32, 8, 1, 256, 256, 576, 448, 432, 240, 120, 40, 9, 1, 512, 512, 1280, 1024, 1120, 672, 400, 160, 50, 10, 1, 1024, 1024, 2816
Offset: 0

Views

Author

Paul D. Hanna, Mar 02 2005

Keywords

Comments

Row sums are the Pell numbers A000129. Let A(x,y) be the g.f. of T and B(x,y) be the g.f. of T^-1; then B(x,y)=(A(-x^2*y,-1/x)-1)/(x*y) and A(x,y)=1+x*y*B(-1/y,-x*y^2).

Examples

			Rows of T begin:
1;
1,1;
2,2,1;
4,4,3,1;
8,8,8,4,1;
16,16,20,12,5,1;
32,32,48,32,18,6,1;
64,64,112,80,56,24,7,1;
128,128,256,192,160,80,32,8,1; ...
The matrix inverse T^-1 equals triangle A104041:
1;
-1,1;
0,-2,1;
0,2,-3,1;
0,0,4,-4,1;
0,0,-4,8,-5,1;
0,0,0,-8,12,-6,1;
0,0,0,8,-20,18,-7,1; ...
the columns of T^-1 equal rows of T in absolute value.
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(n
    				
  • PARI
    T(n,k)=if(n1 && k>1,T(n-2,k-2)))))
    
  • PARI
    T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1-X+X*Y)/(1-2*X-X^2*Y^2),n,x),k,y)

Formula

G.f.: A(x, y) = (1-x+x*y)/(1-2*x-x^2*y^2). T(n, k) = 2*T(n-1, k) + T(n-2, k-2) (n>=k>=2) with T(0, 0)=T(1, 0)=T(1, 1)=1.