cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A104041 Triangular matrix T, read by rows, such that column k is equal (in absolute value) to row (k-1) in the matrix inverse T^-1 (with extrapolated zeros) for k>0, with T(n,n)=1 (n>=0) and T(n,n-1)=-n (n>=1).

Original entry on oeis.org

1, -1, 1, 0, -2, 1, 0, 2, -3, 1, 0, 0, 4, -4, 1, 0, 0, -4, 8, -5, 1, 0, 0, 0, -8, 12, -6, 1, 0, 0, 0, 8, -20, 18, -7, 1, 0, 0, 0, 0, 16, -32, 24, -8, 1, 0, 0, 0, 0, -16, 48, -56, 32, -9, 1, 0, 0, 0, 0, 0, -32, 80, -80, 40, -10, 1, 0, 0, 0, 0, 0, 32, -112, 160, -120, 50, -11, 1, 0, 0, 0, 0, 0, 0, 64, -192, 240, -160, 60, -12, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 02 2005

Keywords

Comments

Row sums are: {1,0,-1,0, 1,0,-1,0, ...}. Absolute row sums form A038754. Let A(x,y) be the g.f. of T and B(x,y) be the g.f. of T^-1; then B(x,y)=1+x*y*A(-1/y,-x*y^2) and A(x,y)=(B(-x^2*y,-1/x)-1)/(x*y).

Examples

			Rows of T begin:
  1;
 -1,  1;
  0, -2,  1;
  0,  2, -3,  1;
  0,  0,  4, -4,   1;
  0,  0, -4,  8,  -5,   1;
  0,  0,  0, -8,  12,  -6,  1;
  0,  0,  0,  8, -20,  18, -7,  1; ...
The matrix inverse T^-1 equals triangle A104040:
  1;
  1,   1;
  2,   2,    1;
  4,   4,    3,   1;
  8,   8,    8,   4,   1;
 16,  16,   20,  12,   5,   1;
 32,  32,   48,  32,  18,   6,  1;
 64,  64,  112,  80,  56,  24,  7,  1; ...
The rows of T^-1 equal columns of T in absolute value.
		

Crossrefs

Programs

  • PARI
    {T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1-X+X*Y)/(1+2*X^2*Y-X^2*Y^2),n,x),k,y)}

Formula

G.f.: A(x, y) = (1 - x + x*y)/(1 + 2*x^2*y - x^2*y^2).
Conjectures from Peter Bala, May 25 2023: (Start)
T(2*n+1,k) = Sum_{i = k-n-1..n} Stirling2(n,i)*Stirling1(i+2,k+1-n) for 0 <= k <= 2*n+1.
T(2*n,k) = binomial(n,k-n)*(-2)^(2*n-k) for 0 <= k <= 2*n. Cf. A038207. (End)

A202012 Expansion of (1-x+x^2)/((1-x)(1-x-x^2-x^3)).

Original entry on oeis.org

1, 1, 3, 6, 11, 21, 39, 72, 133, 245, 451, 830, 1527, 2809, 5167, 9504, 17481, 32153, 59139, 108774, 200067, 367981, 676823, 1244872, 2289677, 4211373, 7745923, 14246974, 26204271, 48197169, 88648415, 163049856
Offset: 0

Views

Author

Philippe Deléham, Dec 08 2011

Keywords

Comments

Antidiagonal sums of triangle T(n,k) = A104040(n,k)*(-1)^floor(k/2). - Philippe Deléham, Dec 11 2011

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x+x^2)/((1-x)(1-x-x^2-x^3)),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,0,-1},{1,1,3,6},40] (* Harvey P. Dale, Apr 21 2014 *)

Formula

a(n) = 2*a(n-1) - a(n-4), n>3.
a(n) = A008937(n-1) - A008937(n) + A008937(n+1). - R. J. Mathar, Dec 10 2011
a(n+1)-a(n) = A081172(n+2). - Philippe Deléham, Dec 11 2011
Showing 1-2 of 2 results.