cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A140685 Triangle T(n,k) read by rows: T(n,k) = 1 if n is odd and k=(n-1)/2; T(n,k) = 2 otherwise.

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Roger L. Bagula and Mats Granvik, Jul 11 2008

Keywords

Comments

Row sums give A042948.

Examples

			The triangle starts in row n=1 with columns 0 <= k < n as:
  1;
  2, 2;
  2, 1, 2;
  2, 2, 2, 2;
  2, 2, 1, 2, 2;
  2, 2, 2, 2, 2, 2;
  2, 2, 2, 1, 2, 2, 2;
  2, 2, 2, 2, 2, 2, 2, 2;
  2, 2, 2, 2, 1, 2, 2, 2, 2;
  2, 2, 2, 2, 2, 2, 2, 2, 2, 2;
		

Crossrefs

Programs

Extensions

Definition simplified by the Assoc. Eds. of the OEIS, Oct 12 2010
More terms from Antti Karttunen, Oct 10 2017

A104040 Triangular matrix T, read by rows, such that row n equals the absolute values of column (n+1) in the matrix inverse T^-1 (with extrapolated zeros): T(n,k) = -Sum_{j=1..[n+1/2]} (-1)^j*T(n-j+1,n-2*j+1)*T(n-j,k) with T(n,n)=1 (n>=0) and T(n,n-1)=n (n>=1).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 8, 8, 8, 4, 1, 16, 16, 20, 12, 5, 1, 32, 32, 48, 32, 18, 6, 1, 64, 64, 112, 80, 56, 24, 7, 1, 128, 128, 256, 192, 160, 80, 32, 8, 1, 256, 256, 576, 448, 432, 240, 120, 40, 9, 1, 512, 512, 1280, 1024, 1120, 672, 400, 160, 50, 10, 1, 1024, 1024, 2816
Offset: 0

Views

Author

Paul D. Hanna, Mar 02 2005

Keywords

Comments

Row sums are the Pell numbers A000129. Let A(x,y) be the g.f. of T and B(x,y) be the g.f. of T^-1; then B(x,y)=(A(-x^2*y,-1/x)-1)/(x*y) and A(x,y)=1+x*y*B(-1/y,-x*y^2).

Examples

			Rows of T begin:
1;
1,1;
2,2,1;
4,4,3,1;
8,8,8,4,1;
16,16,20,12,5,1;
32,32,48,32,18,6,1;
64,64,112,80,56,24,7,1;
128,128,256,192,160,80,32,8,1; ...
The matrix inverse T^-1 equals triangle A104041:
1;
-1,1;
0,-2,1;
0,2,-3,1;
0,0,4,-4,1;
0,0,-4,8,-5,1;
0,0,0,-8,12,-6,1;
0,0,0,8,-20,18,-7,1; ...
the columns of T^-1 equal rows of T in absolute value.
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(n
    				
  • PARI
    T(n,k)=if(n1 && k>1,T(n-2,k-2)))))
    
  • PARI
    T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1-X+X*Y)/(1-2*X-X^2*Y^2),n,x),k,y)

Formula

G.f.: A(x, y) = (1-x+x*y)/(1-2*x-x^2*y^2). T(n, k) = 2*T(n-1, k) + T(n-2, k-2) (n>=k>=2) with T(0, 0)=T(1, 0)=T(1, 1)=1.
Showing 1-2 of 2 results.