cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A140818 Coefficients of Hodge diamond binomial 'X' matrices as polynomials: matrix example; M={{1,0,1}. {0,2,0], {1,0,1}: M(d, x, y)= Sum[Sum[If[n == m, Binomial[d - 1, m - 1], If[n == d - m + 1, Binomial[d - 1, n - 1], 0]]*x^(n - 1)*y^(m - 1), {n, 1, d}], {m, 1, d}] .

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 6, 6, 2, 2, 8, 6, 8, 2, 2, 10, 20, 20, 10, 2, 2, 12, 30, 20, 30, 12, 2, 2, 14, 42, 70, 70, 42, 14, 2, 2, 16, 56, 112, 70, 112, 56, 16, 2, 2, 18, 72, 168, 252, 252, 168, 72, 18, 2
Offset: 1

Views

Author

Roger L. Bagula and Mats Granvik, Jul 16 2008

Keywords

Comments

Apparently the same as A139813. - Georg Fischer, Nov 02 2018

Examples

			{1},
{2, 2},
{2, 2, 2},
{2, 6, 6, 2},
{2, 8, 6, 8, 2},
{2, 10, 20, 20, 10, 2},
{2, 12, 30, 20, 30, 12, 2},
{2, 14, 42, 70, 70, 42, 14, 2},
{2, 16, 56, 112, 70, 112, 56, 16, 2},
{2, 18, 72, 168, 252, 252, 168, 72, 18, 2}.
		

Crossrefs

Programs

  • Mathematica
    M[d_, x_, y_] := Sum[Sum[If[n == m, Binomial[d - 1, m - 1], If[n == d - m + 1, Binomial[ d - 1, n - 1], 0]]*x^(n - 1)*y^(m - 1), {n, 1, d}], {m, 1, d}];
    Flatten@ Table[CoefficientList[M[d, x, 1], x], {d, 1, 10}]

A140819 Triangle read by rows: T(n, m) = m if 2*m = n, otherwise 2*gcd(n, m).

Original entry on oeis.org

0, 2, 2, 4, 1, 4, 6, 2, 2, 6, 8, 2, 2, 2, 8, 10, 2, 2, 2, 2, 10, 12, 2, 4, 3, 4, 2, 12, 14, 2, 2, 2, 2, 2, 2, 14, 16, 2, 4, 2, 4, 2, 4, 2, 16, 18, 2, 2, 6, 2, 2, 6, 2, 2, 18
Offset: 0

Views

Author

Roger L. Bagula and Mats Granvik, Jul 16 2008

Keywords

Examples

			{0},
{2, 2},
{4, 1, 4},
{6, 2, 2, 6},
{8, 2, 2, 2, 8},
{10, 2, 2, 2, 2, 10},
{12, 2, 4, 3, 4, 2, 12},
{14, 2, 2, 2, 2, 2, 2, 14},
{16, 2, 4, 2, 4, 2, 4, 2, 16},
{18, 2, 2, 6, 2, 2, 6, 2, 2, 18}
		

Crossrefs

Programs

  • Mathematica
    M[d_, x_, y_] := Sum[Sum[If[n == m, GCD[d - 1, m - 1], If[n == d - m + 1, GCD[ d - 1, n - 1], 0]]*x^(n - 1)*y^(m - 1), {n, 1, d}], {m, 1, d}]
    Table[CoefficientList[M[d, x, 1], x], {d, 1, 10}]
    Flatten[%]
    Table[Apply[Plus, CoefficientList[M[d, x, 1], x]], {d, 1, 10}]

Extensions

Definition simplified by the editors of the OEIS, Jan 03 2024

A140821 Coefficients of Hodge diamond GCD binomial product 'X' matrices as polynomials: matrix example; M={{2,0,2}. {0,2,0], {2,0,2}: M(d, x, y)= Sum[Sum[If[n == m, GCD[d - 1, m - 1], If[n == d - m + 1, GCD[d - 1, n - 1], 0]]*x^(n - 1)*y^(m - 1), {n, 1, d}], {m, 1, d}] .

Original entry on oeis.org

2, 2, 4, 2, 4, 6, 6, 6, 6, 8, 8, 12, 8, 8, 10, 10, 20, 20, 10, 10, 12, 12, 60, 60, 60, 12, 12, 14, 14, 42, 70, 70, 42, 14, 14, 16, 16, 112, 112, 280, 112, 112, 16, 16, 18, 18, 72, 504, 252, 252, 504, 72, 18, 18
Offset: 1

Views

Author

Roger L. Bagula and Mats Granvik, Jul 16 2008

Keywords

Examples

			{},
{2, 2},
{4, 2, 4},
{6, 6, 6, 6},
{8, 8, 12, 8, 8},
{10, 10, 20, 20, 10, 10},
{12, 12, 60, 60, 60, 12, 12},
{14, 14, 42, 70, 70, 42, 14, 14},
{16, 16, 112, 112, 280, 112, 112, 16, 16},
{18, 18, 72, 504, 252, 252, 504, 72, 18, 18}
		

Crossrefs

Cf. A140685.

Programs

  • Mathematica
    M[d_, x_, y_] := Sum[Sum[If[n == m, Binomial[d - 1, m - 1]* GCD[d - 1, m - 1], If[n == d - m + 1, Binomial[d - 1, n - 1] *GCD[d - 1, n - 1], 0]]*x^(n - 1)*y^(m - 1), {n, d}], {m, d}];
    Flatten@ Table[CoefficientList[M[d, x, 1], x], {d, 10}]
Showing 1-3 of 3 results.