A104053 Triangle of coefficients in the numerators of rational functions in tanh(1) that express the (2n)th du Bois-Reymond constants as C_0 = 0, C_2 = -4 - 1/(1-tanh(1)), for n>1, C_2n = -3 - (Sum_{k=0..n} a(n,k)*tanh(1)^k) / (2^n*n! * (1-tanh(1))^n).
0, 1, 0, 1, -1, -1, -1, 0, 0, 3, 1, -5, 18, -13, -7, -11, 70, -135, 65, -10, 45, 111, -609, 1215, -1350, 1275, -621, -141, -1009, 6188, -16758, 27335, -26845, 12474, -2548, 1883, 10977, -81353, 270004, -511791, 584710, -420287, 216468, -70169, -3599, -146691, 1248210, -4715217, 10303461, -14439411
Offset: 0
Links
- Eric Weisstein's World of Mathematics, Double Factorial.
- Eric Weisstein's World of Mathematics, du Bois-Reymond Constants.
Programs
-
Mathematica
Table[2 Residue[x^2/((1+x^2)^n (Tan[x]-x)), {x, I}], {n, 0, 9}]
Formula
For n>1, C_2n = -3 - 2 * Residue_{x=i} (x^2/((1+x^2)^n * (tan(x) - x))) (see MathWorld article).
For n>1, Sum_{k=0..n} (-1)^(n+k)*a(n, k) = (2*(n-1))!/n! (i.e., A001761(n-1)).
Extensions
Added the keyword tabl Gerald McGarvey, Aug 20 2009
Comments