cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104099 a(n) = n * (10*n^2 - 6n + 1) = n * A087348(n).

Original entry on oeis.org

0, 5, 58, 219, 548, 1105, 1950, 3143, 4744, 6813, 9410, 12595, 16428, 20969, 26278, 32415, 39440, 47413, 56394, 66443, 77620, 89985, 103598, 118519, 134808, 152525, 171730, 192483, 214844, 238873, 264630, 292175, 321568, 352869, 386138, 421435
Offset: 0

Views

Author

Roger L. Bagula, Mar 31 2005

Keywords

Programs

  • Maple
    a[0]:=0:a[1]:=5:a[2]:=58:a[3]:=219: for n from 4 to 40 do a[n]:=4*a[n-1]-6*a[n-2]+4*a[n-3]-a[n-4] od: seq(a[n], n=0..40);
  • Mathematica
    Table[n(10n^2-6n+1),{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,5,58,219},40] (* Harvey P. Dale, Sep 01 2018 *)
  • PARI
    a(n)=n*(10*n^2 - 6*n + 1) \\ Charles R Greathouse IV, Oct 18 2022

Formula

Recurrence relation: a(n)=4a(n-1)-6a(n-2)+4a(n-3)-a(n-4) for n>=4; a(0)=0, a(1)=5, a(2)=58, a(3)=219.
O.g.f.: x*(5+38*x+17*x^2)/(-1+x)^4 = 132/(-1+x)^3+60/(-1+x)^4+89/(-1+x)^2+17/(-1+x) . - R. J. Mathar, Dec 05 2007

Extensions

Edited by N. J. A. Sloane, May 20 2006, Jun 06 2007