A104157 Smallest of n^2 consecutive primes that form an n X n magic square with the least magic constant, or 0 if no such magic square exists.
2, 0, 1480028129, 31, 13, 7, 7, 79, 37, 23, 67, 89, 13, 89, 131, 31, 71, 47, 43, 73, 277, 353, 41, 67, 127, 223, 79, 13, 193, 5, 23, 43, 5, 67, 3, 19, 5, 59, 59, 653, 19, 19, 97, 409, 5, 383, 29, 137, 379, 349, 653, 1187, 47, 41, 37, 17, 619, 89, 283, 283, 43, 479, 191
Offset: 1
References
- H. L. Nelson, Journal of Recreational Mathematics, 1988, vol. 20:3, p. 214.
- Clifford A. Pickover, The Zen of Magic Squares, Circles and Stars: An Exhibition of Surprising Structures across Dimensions, Princeton University Press, 2002.
Links
- Harvey Heinz, Prime Magic Squares
- Stefano Tognon, Table for prime magic squares
- Index entries for sequences related to magic squares
Crossrefs
Programs
-
PARI
A104157(n)=MagicPrimes(A073520[n],n)[1] \\ See A073519 for MagicPrimes(). This code uses a precomputed array A073520, but in practice one would rather compute that sequence as function of this one. - M. F. Hasler, Oct 29 2018
Formula
Conjecture: for n > 4, a(n) = prime(s) where s > 1 is the smallest integer such that (Sum_{i=s..s+n^2-1} prime(i))/n is an integer of the same parity as n. - Max Alekseyev, Jan 29 2010
a(n) = prime(i) such that Sum_{k=0..n^2-1} prime(i+k) = n*A073520(n). - M. F. Hasler, Oct 29 2018
Extensions
a(5)-a(6) corrected, a(7)-a(20) added by Max Alekseyev, Sep 24 2009
Definition edited by N. J. A. Sloane, Oct 03 2009
More terms from Max Alekseyev, Jan 29 2010
Comments