cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104238 Positive integers n such that n^5 + 1 is semiprime.

Original entry on oeis.org

2, 10, 12, 16, 22, 126, 136, 180, 256, 268, 276, 366, 388, 396, 438, 462, 606, 642, 652, 658, 676, 738, 760, 768, 982, 1012, 1068, 1116, 1230, 1276, 1320, 1452, 1488, 1530, 1618, 1692, 1698, 1752, 1846, 1948, 1996, 2080, 2112, 2160, 2332, 2392, 2440, 2520
Offset: 1

Views

Author

Jonathan Vos Post, Apr 02 2005

Keywords

Comments

n^5+1 can only be prime when n = 1, n^5+1 = 2. This is because of the polynomial factorization n^5+1 = (n+1) * (n^4 - n^3 + n^2 - n + 1) = (n+1)*A060884(n). Hence after the initial n=1 prime, the binomial can at best be semiprime and that only when both (n+1) and (n^4 - n^3 + n^2 - n + 1) are primes.

Examples

			n n^5+1 = (n+1) * (n^4 - n^3 + n^2 - n + 1)
2 33 = 3 * 11
10 100001 = 11 * 9091
12 248833 = 13 * 19141
16 1048577 = 17 * 61681
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2600],PrimeOmega[#^5+1]==2&] (* Harvey P. Dale, May 20 2011 *)
    Select[Range[200000], PrimeQ[# + 1] && PrimeQ[(#^5 + 1)/(# + 1)] &] (* Robert Price, Mar 09 2015 *)

Formula

a(n)^5 + 1 is semiprime. a(n)+1 is prime and a(n)^4 - a(n)^3 + a(n)^2 - a(n) + 1 is prime.