A104265 Smallest n-digit square with no zero digits.
1, 16, 121, 1156, 11236, 111556, 1115136, 11115556, 111112681, 1111155556, 11111478921, 111111555556, 1111118377216, 11111115555556, 111111226346761, 1111111155555556, 11111112515384644, 111111111555555556, 1111111112398242916, 11111111115555555556, 111111111113333185156, 1111111111155555555556
Offset: 1
Examples
a(3) = Min{121, 144, 169, 196, ....} = 121.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..362
Programs
-
Mathematica
f[n_] := Block[{k = Ceiling[ Sqrt[10^n]]}, While[ Union[ IntegerDigits[ k^2]][[1]] == 0, k++ ]; k^2]; Table[ f[n], {n, 0, 20}] (* Robert G. Wilson v, Mar 02 2005 *) snds[n_]:=Module[{c=Ceiling[Sqrt[FromDigits[Join[PadRight[{},n-1,1], {0}]]]]^2},While[DigitCount[c,10,0]>0,c=(1+Sqrt[c])^2];c]; Array[ snds,22] (* Harvey P. Dale, Jun 12 2020 *)
-
Python
from sympy import integer_nthroot def A104265(n): m, a = integer_nthroot((10**n-1)//9,2) if not a: m += 1 k = m**2 while '0' in str(k): m += 1 k += 2*m-1 return k # Chai Wah Wu, Mar 24 2020
Formula
From Chai Wah Wu, Mar 24 2020: (Start)
a(n) >= (10^n-1)/9.
a(2n) = (10^n+2)^2/9 = A102807(n). Proof: the smallest 2n-digit number without zero digits is (10^(2n)-1)/9. ((10^n-1)/3)^2 = (10^(2n)-2*10^n+1)/9 < (10^(2n)-1)/9 for n >= 1. Thus a(2n) > ((10^n-1)/3)^2. The next square is ((10^n+2)/3)^2 = (10^(2n)-1)/9 + 4*(10^(n)-1)/9 + 1, i.e. it is n 1's followed by n-1 5's followed by the digit 6, and has no zero digits.
(End)
Extensions
More terms from Robert G. Wilson v, Mar 02 2005
Two more terms from Jon E. Schoenfield, Mar 29 2015
a(21)-a(22) from Chai Wah Wu, Mar 24 2020