A104270 a(n) = 2^(n - 2)*(binomial(n,2) + 2).
1, 3, 10, 32, 96, 272, 736, 1920, 4864, 12032, 29184, 69632, 163840, 380928, 876544, 1998848, 4521984, 10158080, 22675456, 50331648, 111149056, 244318208, 534773760, 1166016512, 2533359616, 5486149632, 11844714496, 25501368320, 54760833024, 117306294272, 250718715904
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..237
- M. Klazar, On identities concerning the numbers of crossings and nestings of two edges in matchings
- Tosic R., Masulovic D., Stojmenovic I., Brunvoll J., Cyvin B. N. and Cyvin S. J., Enumeration of polyhex hydrocarbons to h = 17, J. Chem. Inf. Comput. Sci., 1995, 35, 181-187, Table 1 (with an error at h=16).
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
Programs
-
Magma
[2^(n-2)*(Binomial(n,2)+2): n in [1..30]]; // Vincenzo Librandi, May 24 2011
-
Mathematica
Table[n!*Det[Array[KroneckerDelta[#1,#2](((#1+2)/(#1))-1)+1 &, {n,n}]], {n, 1, 10}] (* John M. Campbell, May 20 2011 *) LinearRecurrence[{6,-12,8},{1,3,10},30] (* Harvey P. Dale, Jul 03 2017 *)
-
PARI
a(n)=(binomial(n,2)+2)<<(n-2) \\ Charles R Greathouse IV, May 24 2011
Formula
G.f.: x*(1 - 3*x + 4*x^2)/(1-2*x)^3. - Colin Barker, Apr 01 2012
Comments