cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A246972 (n+1)^2 concatenated with n^2.

Original entry on oeis.org

10, 41, 94, 169, 2516, 3625, 4936, 6449, 8164, 10081, 121100, 144121, 169144, 196169, 225196, 256225, 289256, 324289, 361324, 400361, 441400, 484441, 529484, 576529, 625576, 676625, 729676, 784729, 841784, 900841, 961900, 1024961, 10891024, 11561089, 12251156, 12961225, 13691296
Offset: 0

Views

Author

N. J. A. Sloane, Sep 13 2014

Keywords

Crossrefs

Cf. A246973, A235497. For primes, see A104301.

Programs

  • Magma
    [10] cat [Seqint(Intseq(n^2) cat Intseq(n^2+2*n+1)): n in [1..50]]; // Vincenzo Librandi, Sep 13 2014
    
  • Mathematica
    Table[FromDigits[Join[Flatten[IntegerDigits[{(n + 1)^2, n^2}]]]], {n, 0, 50}] (* Vincenzo Librandi, Sep 13 2014 *)
    FromDigits/@(Join[IntegerDigits[#[[2]]],IntegerDigits[#[[1]]]]&/@ Partition[ Range[0,40]^2,2,1]) (* Harvey P. Dale, Apr 16 2015 *)
  • Python
    def A246972(n):
        return int(str((n+1)**2)+str(n**2)) # Chai Wah Wu, Sep 13 2014

A104242 Primes which are the concatenation of two consecutive square numbers.

Original entry on oeis.org

6481, 144169, 324361, 400441, 784841, 16001681, 23042401, 67246889, 77447921, 84648649, 92169409, 96049801, 1254412769, 1638416641, 1742417689, 1960019881, 2016420449, 4752447961, 5382454289, 5664457121, 5760058081, 6051661009
Offset: 1

Views

Author

Shyam Sunder Gupta, Apr 17 2005

Keywords

Comments

The second prime in this sequence, 144169, arises in the theory of modular forms, as observed by Hecke. On page 671 of Hecke (1937), Hecke works out the cusp forms of weight 24 and observes that the Hecke operators have eigenfunctions with Fourier coefficients in the quadratic field of discriminant 144169. Thanks to Jerrold B. Tunnell for this comment. See also the articles by Hida and Zagier. N. J. A. Sloane, Sep 13 2014

Examples

			The first term is 6481 which is a prime and is the concatenation of 64 and 81 which are two consecutive square numbers.
		

References

  • E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung, Math. Annalen, 114 (1937), 1-28; Werke pp. 644-671. See page 671.

Crossrefs

A090738 gives the numbers n such that a(n) = (n^2 concatenated with (n+1)^2) is prime.
These are the primes in A246973. Cf. A104301, A246972.

Programs

  • Maple
    catn:= proc(a,b) 10^(1+ilog10(b))*a+b end proc:
    R:= NULL: count:= 0:
    for x from 2 by 2 while count < 100 do
      y:= catn(x^2,(x+1)^2);
      if isprime(y) then count:= count+1; R:= R, y; fi
    od:
    R; # Robert Israel, May 19 2020
  • Python
    from sympy import isprime
    A104242_list = []
    for n in range(1,2000):
        x = int(str(n**2)+str((n+1)**2))
        if isprime(x):
            A104242_list.append(x) # Chai Wah Wu, Sep 13 2014

A104302 Primes which are the reverse concatenation of three consecutive square numbers.

Original entry on oeis.org

941, 25169, 169144121, 302529162809, 110251081610609, 166411638416129, 497294928448841, 580815760057121, 930259241691809, 123201122500121801, 139129138384137641, 140625139876139129, 196249195364194481, 214369213444212521, 235225234256233289, 261121260100259081
Offset: 1

Views

Author

Shyam Sunder Gupta, Apr 17 2005

Keywords

Examples

			The first term is 941 which is a prime and is the reverse concatenation of 1, 4 and 9 which are three consecutive square numbers.
		

Crossrefs

Programs

  • Mathematica
    Select[FromDigits[Flatten[IntegerDigits/@#]]&/@(Reverse/@Partition[Range[500]^2,3,1]),PrimeQ] (* Harvey P. Dale, Sep 21 2024 *)

A104303 Primes which are the reverse concatenation of four consecutive square numbers.

Original entry on oeis.org

576529484441, 7056688967246561, 34596342253385633489, 49284488414840047961, 202500201601200704199809, 230400229441228484227529, 260100259081258064257049, 389376388129386884385641, 527076525625524176522729, 553536552049550564549081, 599076597529595984594441
Offset: 1

Views

Author

Shyam Sunder Gupta, Apr 17 2005

Keywords

Examples

			The first term is 576529484441 which is a prime and is the reverse concatenation of 441, 484, 529 and 576 which are four consecutive square numbers.
		

Crossrefs

Programs

  • Mathematica
    Select[FromDigits[Flatten[IntegerDigits/@#]]&/@(Reverse/@Partition[ Range[ 1000]^2,4,1]),PrimeQ] (* Harvey P. Dale, Sep 07 2020 *)

A104304 Primes which are the reverse concatenation of five consecutive square numbers.

Original entry on oeis.org

1876918496182251795617689, 3648136100357213534434969, 297025295936294849293764292681, 466489465124463761462400461041, 16770251674436167184916692641666681, 17556251752976175032917476841745041, 30660013062500305900130555043052009, 31506253147076314352931399843136441
Offset: 1

Views

Author

Shyam Sunder Gupta, Apr 17 2005

Keywords

Examples

			The first term is 1876918496182251795617689 which is a prime and is the reverse concatenation of 17689, 17956, 18225, 18496 and 18769 which are five consecutive square numbers.
		

Crossrefs

Programs

  • Mathematica
    cat[s_] := FromDigits[Flatten[IntegerDigits[s]]]; Select[cat /@ Reverse /@ Partition[Range[3000]^2, 5, 1], PrimeQ] (* Amiram Eldar, Jul 15 2025 *)

Extensions

More terms from Amiram Eldar, Jul 15 2025
Showing 1-5 of 5 results.