A104309 Minimum length of a perfect ruler that contains a segment not shorter than n.
1, 3, 5, 7, 10, 12, 14, 16, 18, 20, 24, 24, 27, 30, 31, 33, 37, 37, 39, 44, 44, 45, 51, 51, 51, 54, 59, 59, 60, 62, 69, 69, 69, 70, 80, 80, 80, 81, 83, 91, 91, 91, 91, 93
Offset: 1
Examples
The list of shortest perfect rulers containing a segment>=n starts: n.a(n)..rulers..(marks enclosing longest segment) 1..1....[0,1]........(0,1) 2..3....[0,1,3]......(1,3) 3..5....[0,1,2,5]....(2,5) 4..7....[0,1,2,3,7]..(3,7) 5.10....[0,1,2,4,9,10]..(4,9) ........[0,1,3,4,9,10]..(4,9) ........[0,1,6,7,8,10]..(1,6) 6.12....[0,1,3,5,11,12]..(5,11) ........[0,1,7,8,10,12]..(1,7) 7.14....[0,1,2,4,6,13,14]...(6,13) ........[0,1,3,4,6,13,14]...(6,13) ........[0,1,3,5,6,13,14]...(6,13) ........[0,1,8,9,10,12,14]..(1,8) ........[0,1,8,9,11,12,14]..(1,8) 8.16....[0,1,3,5,7,15,16]....(7,15) ........[0,1,9,10,12,14,16]..(1,9)
Links
- F. Schwartau, Y. Schröder, L. Wolf and J. Schoebel, Table of n, a(n) for n = 1..92
- Peter Luschny, Perfect and Optimal Rulers. A short introduction.
- Hugo Pfoertner, Largest and smallest maximum differences of consecutive marks of perfect rulers.
- F. Schwartau, Y. Schröder, L. Wolf and J. Schoebel, MRLA search results and source code, Nov 6 2020.
- F. Schwartau, Y. Schröder, L. Wolf and J. Schoebel, Large Minimum Redundancy Linear Arrays: Systematic Search of Perfect and Optimal Rulers Exploiting Parallel Processing, IEEE Open Journal of Antennas and Propagation, 2 (2021), 79-85.
- Index entries for sequences related to perfect rulers.
Comments