A104312
Prime coefficient of x^n in (x^3+x^2+x+1)^n for n in A104311.
Original entry on oeis.org
3, 31, 101, 3823, 2266366724843687556556015073508073201681
Offset: 1
Cf.
A005725 (quadrinomial coefficients),
A104314 (nontrivial prime pentanomial coefficients).
-
f=1; Do[f=Expand[f*(x^3+x^2+x+1)]; s=Coefficient[f, x, n]; If[PrimeQ[s], Print[{n, s}]], {n, 1000}]
A104313
Numbers n such that the coefficient of x^(2n) in (x^4+x^3+x^2+x+1)^n is prime.
Original entry on oeis.org
2, 3, 28, 30, 31
Offset: 1
Cf.
A005191 (pentanomial coefficients).
-
f=1; Do[f=Expand[f*(x^4+x^3+x^2+x+1)]; s=Coefficient[f, x, 2n]; If[PrimeQ[s], Print[{n, s}]], {n, 100}]
Showing 1-2 of 2 results.
Comments