cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104345 Triangle read by rows: T(n,k) is the number of alternating permutations on [n+1] with 1 in position k+1, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 3, 2, 5, 8, 6, 8, 5, 16, 25, 20, 20, 25, 16, 61, 96, 75, 80, 75, 96, 61, 272, 427, 336, 350, 350, 336, 427, 272, 1385, 2176, 1708, 1792, 1750, 1792, 1708, 2176, 1385, 7936, 12465, 9792, 10248, 10080, 10080, 10248, 9792, 12465, 7936
Offset: 0

Views

Author

David Callan, Mar 02 2005

Keywords

Examples

			Table begins
\ k..0....1....2....3....4....
n
0 |..1
1 |..1....1
2 |..1....2....1
3 |..2....3....3....2
4 |..5....8....6....8....5
5 |.16...25...20...20...25...16
6 |.61...96...75...80...75...96...61
7 |272..427..336..350..350..336..427..272
For example, T(3,1) counts 2143, 3142, 4132 - the alternating permutations on [4] with 1 in position 2.
		

Crossrefs

Cf. A104346. Row sums are A001250; column k=0 and main diagonal are the up-down numbers (A000111); column k=1 is A065619.
T(2n,n) gives A362581.

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(o-1+j, u-j), j=1..u))
        end:
    T:= (n, k)-> binomial(n, k)*b(k, 0)*b(n-k, 0):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Apr 25 2023
  • Mathematica
    b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[o-1+j, u-j], {j, 1, u}]];
    T[n_, k_] := Binomial[n, k]*b[k, 0]*b[n-k, 0];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz *)

Formula

The mixed o.g.f./e.g.f. is Sum_{k=0..n} T(n, k)*x^n/n!*y^k = (sec(x) + tan(x))*(sec(x*y) + tan(x*y)).
T(n,k) = binomial(n,k)*A000111(k)*A000111(n-k). - Alois P. Heinz, Apr 25 2023