cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104382 Triangle, read by rows, where T(n,k) equals number of distinct partitions of triangular number n*(n+1)/2 into k different summands for n>=k>=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 7, 12, 6, 1, 1, 10, 27, 27, 10, 1, 1, 13, 52, 84, 57, 14, 1, 1, 17, 91, 206, 221, 110, 21, 1, 1, 22, 147, 441, 674, 532, 201, 29, 1, 1, 27, 225, 864, 1747, 1945, 1175, 352, 41, 1, 1, 32, 331, 1575, 4033, 5942, 5102, 2462, 598, 55, 1, 1, 38, 469
Offset: 1

Views

Author

Paul D. Hanna, Mar 04 2005

Keywords

Comments

Secondary diagonal equals partitions of n - 1 (A000065).
Third diagonal is A104384.
Third column is A104385.
Row sums are A104383 where limit_{n --> inf} A104383(n+1)/A104383(n) = exp(sqrt(Pi^2/6)) = 3.605822247984...

Examples

			Rows begin:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 7, 12, 6, 1;
1, 10, 27, 27, 10, 1;
1, 13, 52, 84, 57, 14, 1;
1, 17, 91, 206, 221, 110, 21, 1;
1, 22, 147, 441, 674, 532, 201, 29, 1;
1, 27, 225, 864, 1747, 1945, 1175, 352, 41, 1;
1, 32, 331, 1575, 4033, 5942, 5102, 2462, 598, 55, 1; ...
		

References

  • Abramowitz, M. and Stegun, I. A. (Editors). "Partitions into Distinct Parts." S24.2.2 in Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, pp. 825-826, 1972.

Crossrefs

Programs

  • PARI
    T(n,k)=if(n
    				

Formula

T(n, 1) = T(n, n) = 1.
T(n, n-1) = A000065(n).
T(n, 2) = [(n*(n+1)/2-1)/2].
From Álvar Ibeas, Jul 23 2020: (Start)
T(n, k) = A008284((n-k+1)*(n+k)/2, k).
T(n, k) = A026820((n-k)*(n+k+1)/2, k), with A026820(0, k) = 1. (End)