A104382 Triangle, read by rows, where T(n,k) equals number of distinct partitions of triangular number n*(n+1)/2 into k different summands for n>=k>=1.
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 7, 12, 6, 1, 1, 10, 27, 27, 10, 1, 1, 13, 52, 84, 57, 14, 1, 1, 17, 91, 206, 221, 110, 21, 1, 1, 22, 147, 441, 674, 532, 201, 29, 1, 1, 27, 225, 864, 1747, 1945, 1175, 352, 41, 1, 1, 32, 331, 1575, 4033, 5942, 5102, 2462, 598, 55, 1, 1, 38, 469
Offset: 1
Examples
Rows begin: 1; 1, 1; 1, 2, 1; 1, 4, 4, 1; 1, 7, 12, 6, 1; 1, 10, 27, 27, 10, 1; 1, 13, 52, 84, 57, 14, 1; 1, 17, 91, 206, 221, 110, 21, 1; 1, 22, 147, 441, 674, 532, 201, 29, 1; 1, 27, 225, 864, 1747, 1945, 1175, 352, 41, 1; 1, 32, 331, 1575, 4033, 5942, 5102, 2462, 598, 55, 1; ...
References
- Abramowitz, M. and Stegun, I. A. (Editors). "Partitions into Distinct Parts." S24.2.2 in Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, pp. 825-826, 1972.
Links
- Alois P. Heinz, Rows n = 1..55, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Eric Weisstein's World of Mathematics, Partition Function Q.
Programs
-
PARI
T(n,k)=if(n
Formula
T(n, 1) = T(n, n) = 1.
T(n, n-1) = A000065(n).
T(n, 2) = [(n*(n+1)/2-1)/2].
From Álvar Ibeas, Jul 23 2020: (Start)
T(n, k) = A008284((n-k+1)*(n+k)/2, k).
Comments