A104400 Sums of 10 distinct positive pentatope numbers (A000332).
2002, 2288, 2508, 2652, 2673, 2793, 2872, 2877, 2933, 2968, 2988, 2998, 3002, 3037, 3107, 3157, 3158, 3241, 3297, 3323, 3327, 3332, 3352, 3362, 3366, 3443, 3492, 3527, 3543, 3583, 3612, 3613, 3618, 3638, 3648, 3652, 3663, 3667, 3696, 3747, 3752, 3778
Offset: 1
References
- Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
- J. V. Post, Table of Polytope Numbers, Sorted, Through 1,000,000.
- Eric Weisstein's World of Mathematics, Pentatope Number.
Crossrefs
Programs
-
Maple
N:= 10000: # to get all terms <= N nmax:= floor(-3/2+1/2*sqrt(5+4*sqrt(1+24*N))): S:= select(`<=`,{seq(add(s*(s+1)*(s+2)*(s+3)/24,s=c), c = combinat:-choose(nmax,10))},N): sort(convert(S,list)); # Robert Israel, Dec 14 2015
Formula
a(n) = Ptop(b) + Ptop(c) + Ptop(d) + Ptop(e) + Ptop(f) + Ptop(g) + Ptop(h) + Ptop(i) + Ptop(j) + Ptop(k) for some positive b=/=c=/=d=/=e=/=f=/=g=/=h=/=i=/=j=/=k and Ptop(n) = binomial(n+3,4).
Extensions
Extended by Ray Chandler, Mar 05 2005
Comments