cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104402 Matrix inverse of triangle A091491, read by rows.

Original entry on oeis.org

1, -1, 1, 1, -2, 1, 0, 2, -3, 1, 0, -1, 4, -4, 1, 0, 0, -3, 7, -5, 1, 0, 0, 1, -7, 11, -6, 1, 0, 0, 0, 4, -14, 16, -7, 1, 0, 0, 0, -1, 11, -25, 22, -8, 1, 0, 0, 0, 0, -5, 25, -41, 29, -9, 1, 0, 0, 0, 0, 1, -16, 50, -63, 37, -10, 1, 0, 0, 0, 0, 0, 6, -41, 91, -92, 46, -11, 1, 0, 0, 0, 0, 0, -1, 22, -91, 154, -129, 56, -12, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 05 2005

Keywords

Comments

Row sums are all 0's for n>0. Absolute row sums form 2*A000045(n+1) for n>0, where A000045 = Fibonacci numbers. Sums of squared terms in row n = 2*A003440(n) for n>0, where A003440 = number of binary vectors with restricted repetitions.
Riordan array (1-x+x^2, x(1-x)). - Philippe Deléham, Nov 04 2009

Examples

			Triangle begins as:
   1;
  -1,  1;
   1, -2,  1;
   0,  2, -3,  1;
   0, -1,  4, -4,   1;
   0,  0, -3,  7,  -5,   1;
   0,  0,  1, -7,  11,  -6,  1;
   0,  0,  0,  4, -14,  16, -7,  1;
   0,  0,  0, -1,  11, -25, 22, -8, 1;
		

Crossrefs

Programs

  • Mathematica
    Table[(-1)^(n-k)*(Binomial[k, n-k] + Binomial[k+1, n-k-1]), {n,0,12}, {k,0,n}] //Flatten (* G. C. Greubel, Apr 30 2021 *)
  • PARI
    T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1-X+X^2)/(1-X*Y*(1-X)),n,x),k,y)
    
  • PARI
    T(n,k)=if(n
    				
  • PARI
    T(n,k)=(-1)^(n-k)*(binomial(k,n-k)+binomial(k+1,n-k-1))
    
  • Sage
    def A104402(n,k): return (-1)^(n+k)*(binomial(k,n-k) + binomial(k+1,n-k-1))
    flatten([[A104402(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 30 2021

Formula

G.f.: (1-x+x^2)/(1-x*y*(1-x)).
T(n, k) = T(n-1, k-1) - T(n-2, k-1) for k>0 with T(0, 0)=1, T(1, 0)=-1, T(2, 0)=1, T(n, 0)=0 (n>2).
T(n, k) = (-1)^(n-k)*(C(k, n-k) + C(k+1, n-k-1)).
From Philippe Deléham, Nov 04 2009: (Start)
Sum_{k=0..n} T(n,k) = 0^n.
Sum_{k=0..n} abs(T(n, k)) = 2*Fibonacci(n+1) - [n=0].
Sum_{k=0..n} ( T(n,k) )^2 = 2*A003440(n) - [n=0]. (End)