A104404 Number of groups of order n all of whose subgroups are normal.
1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 6, 2, 2, 1, 2, 1, 3, 1, 4, 1, 1, 1, 2, 1, 1, 2, 12, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 6, 5, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 8, 1, 2, 2, 4, 1, 1
Offset: 1
References
- Robert D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.
- John C. Lennox and Stewart. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.
Links
- Hans Havermann, Table of n, a(n) for n = 1..10000
- Boris Horvat, Gašper Jaklič, and Tomaž Pisanski, On the number of hamiltonian groups, Mathematical Communications, Vol. 10, No. 1 (2005), pp. 89-94; arXiv preprint, arXiv:math/0503183 [math.CO], 2005.
- Eric Weisstein's World of Mathematics, Abelian Group.
- Eric Weisstein's World of Mathematics, Hamiltonian Group.
Programs
-
Mathematica
orders[n_]:=Map[Last, FactorInteger[n]]; b[n_]:=Apply[Times, Map[PartitionsP, orders[n]]]; e[n_]:=n/ 2^IntegerExponent[n, 2]; h[n_]/;Mod[n, 8]==0:=b[e[n]]; h[n_]:=0; a[n_]:= b[n]+h[n];
-
PARI
a(n)={my(e=valuation(n, 2)); my(f=factor(n/2^e)[, 2]); prod(i=1, #f, numbpart(f[i]))*(numbpart(e) + (e>=3))} \\ Andrew Howroyd, Aug 08 2018
Formula
The number a(n) of all groups of order n all of whose subgroups are normal is given as a(n) = b(n) + h(n), where b(n) denotes the number of Abelian groups of order n and h(n) denotes the number of Hamiltonian groups of order n.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A021002 * (1 + A048651/4) = 2.46053840757488111675... . - Amiram Eldar, Sep 23 2023
Extensions
Keyword:mult added by Andrew Howroyd, Aug 08 2018
Comments