cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104404 Number of groups of order n all of whose subgroups are normal.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 6, 2, 2, 1, 2, 1, 3, 1, 4, 1, 1, 1, 2, 1, 1, 2, 12, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 6, 5, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 8, 1, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Boris Horvat (Boris.Horvat(AT)fmf.uni-lj.si), Gasper Jaklic (Gasper.Jaklic(AT)fmf.uni-lj.si), Tomaz Pisanski, Apr 19 2005

Keywords

Comments

A finite non-Abelian group has all of its subgroups normal precisely when it is the direct product of the quaternion group of order 8, a (possibly trivial) elementary Abelian 2-group, and an Abelian group of odd order. [Carmichael, p. 114] - Eric M. Schmidt, Jan 12 2014

References

  • Robert D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.
  • John C. Lennox and Stewart. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.

Crossrefs

Programs

  • Mathematica
    orders[n_]:=Map[Last, FactorInteger[n]]; b[n_]:=Apply[Times, Map[PartitionsP, orders[n]]]; e[n_]:=n/ 2^IntegerExponent[n, 2]; h[n_]/;Mod[n, 8]==0:=b[e[n]]; h[n_]:=0; a[n_]:= b[n]+h[n];
  • PARI
    a(n)={my(e=valuation(n, 2)); my(f=factor(n/2^e)[, 2]); prod(i=1, #f, numbpart(f[i]))*(numbpart(e) + (e>=3))} \\ Andrew Howroyd, Aug 08 2018

Formula

The number a(n) of all groups of order n all of whose subgroups are normal is given as a(n) = b(n) + h(n), where b(n) denotes the number of Abelian groups of order n and h(n) denotes the number of Hamiltonian groups of order n.
a(n) = A000688(n) + A104488(n). - Andrew Howroyd, Aug 08 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A021002 * (1 + A048651/4) = 2.46053840757488111675... . - Amiram Eldar, Sep 23 2023

Extensions

Keyword:mult added by Andrew Howroyd, Aug 08 2018