cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104421 Numbers n such that n, prime(n), prime(n)+n, prime(n)-n and prime(n)*n all numbers without the digit 1.

Original entry on oeis.org

74, 75, 80, 86, 87, 95, 96, 350, 352, 354, 355, 357, 360, 364, 376, 536, 557, 564, 583, 584, 590, 592, 593, 594, 596, 599, 600, 623, 635, 639, 656, 659, 660, 665, 667, 674, 677, 678, 699, 700, 703, 706, 707, 724, 728, 734, 744, 750, 759, 762, 765, 766, 770
Offset: 1

Views

Author

Zak Seidov, Mar 07 2005

Keywords

Comments

The graph is of quasi-piecewise linear character.
Any other reasonable function(s) of p and m not having digit 1?
Subsequence of A084368: a(1) = 75 = A084368(36), a(100) = 2744 = A084368(898). - Zak Seidov, Dec 04 2013

Examples

			For n = 74, p = prime(74) = 373, p + n = 447, p - n = 299, p*n = 27602.
For n = 256709, p = prime(256709) = 3599737, p + n = 3856446, p - n = 3343028, p*n = 924084885533.
		

Crossrefs

Programs

  • Mathematica
    id[x_]:=IntegerDigits[x]; pr[i_]:=Prime[i]; ra=Range[3000]; A104421=Select[ra, Position[Union[id[ # ], id[pr[ # ]], id[pr[ # ]+# ], id[pr[ # ]-# ], id[pr[ # ]*# ]], 1]=={}&]
    prQ[n_]:=With[{p=Prime[n]},AllTrue[IntegerDigits/@{n,p,p+n,p-n,p*n},FreeQ[#,1]&]]; Select[Range[1000],prQ] (* Harvey P. Dale, Aug 29 2025 *)