cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104426 Numbers k such that the digit 6 does not appear in the decimal expansion of k, Pk, Pk+k, Pk-k, or Pk*k, where Pk is the k-th prime.

Original entry on oeis.org

1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 20, 21, 22, 25, 30, 33, 35, 37, 41, 43, 44, 48, 50, 51, 52, 53, 54, 55, 58, 70, 72, 75, 80, 81, 82, 83, 85, 93, 95, 128, 149, 152, 170, 171, 174, 184, 185, 187, 188, 189, 194, 198, 201, 203, 210, 212, 215, 217, 233, 235, 238, 242, 245
Offset: 1

Views

Author

Zak Seidov, Mar 07 2005

Keywords

Comments

From the first 3000 primes, only 179 are terms.
From the first 3000 integers, only 343 are terms.

Crossrefs

Programs

  • Mathematica
    id[x_]:=IntegerDigits[x];pr[i_]:=Prime[i];ra=Range[3000];A104426=Select[ra, Position[Union[id[ # ], id[pr[ # ]], id[pr[ # ]+# ], id[pr[ # ]-# ], id[pr[ # ]*# ]], 6]=={}&]
    slQ[n_]:=Module[{p=Prime[n]},Union[DigitCount[#,10,6]&/@{n,p,p+n,p-n, p*n}] == {0}]; Select[Range[250],slQ] (* Harvey P. Dale, Feb 01 2018 *)
  • PARI
    has(n)=!setsearch(Set(digits(n)),6)
    is(n,p=prime(n))=has(n) && has(p) && has(p+n) && has(p-n) && has(p*n) \\ Charles R Greathouse IV, Feb 01 2018

Extensions

Definition modified (at the suggestion of N. J. A. Sloane) by Harvey P. Dale, Feb 10 2018