A104443 Square of P(n,t) read by antidiagonals. P(n,t) = number of ways to split [t*n] into n arithmetic progressions each with t terms.
1, 1, 1, 1, 3, 1, 1, 2, 15, 1, 1, 2, 5, 105, 1, 1, 2, 4, 15, 945, 1, 1, 2, 4, 11, 55, 10395, 1, 1, 2, 4, 10, 23, 232, 135135, 1, 1, 2, 4, 10, 21, 68, 1161, 2027025, 1, 1, 2, 4, 10, 20, 59, 161, 6643, 34459425, 1, 1, 2, 4, 10, 20, 57, 125, 488, 44566, 654729075, 1
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 3, 2, 2, 2, 2, 2, 2, 2, ... 1, 15, 5, 4, 4, 4, 4, 4, 4, ... 1, 105, 15, 11, 10, 10, 10, 10, 10, ... 1, 945, 55, 23, 21, 20, 20, 20, 20, ... 1, 10395, 232, 68, 59, 57, 56, 56, 56, ... 1, 135135, 1161, 161, 125, 119, 117, 116, 116, ... 1, 2027025, 6643, 488, 349, 329, 323, 321, 320, ... 1, 34459425, 44566, 1249, 848, 760, 745, 739, 737, ... ...
Extensions
More terms from Alois P. Heinz, Nov 18 2020