A104500 Number of different groupings among the hierarchical orderings of n unlabeled elements.
1, 4, 11, 35, 98, 294, 832, 2401, 6774, 19137, 53466, 148994, 412233, 1136383, 3116654, 8515706, 23172455, 62836916, 169801824, 457406173, 1228382159, 3289493887, 8784935160, 23400668297, 62179339101, 164832960183, 435978612329, 1150673925933, 3030701471118
Offset: 1
Keywords
Examples
Let * denote an element, let : denote separator among different levels within a hierarchy, let | denote a separator between different hierarchies. Furthermore, the braces {} indicate a group. For n=3 one has a(3) = 11 because {***}, {*|*|*}, {*}{*}{*}, {*:*:*}, {*:**}, {*|**}, {*:*|*}, {*:*}{*}, {*|*}{*}, {**:*}, {*}{**}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..800
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, Order 21 (2004), 83-89.
Programs
-
Maple
etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=numtheory[divisors](j)) *b(n-j), j=1..n)/n) end end: b:= etr(n-> 2^(n-1)): a:= etr(b): seq(a(n), n=1..30); # Alois P. Heinz, Apr 21 2012
-
Mathematica
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b = etr[Function[{n}, 2^(n-1)]]; a = etr[b]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
Formula
Euler transform of 1, 3, 7, 18, 42, 104, 244, 585, 1373, ... = A034691.
Extensions
More terms from Alois P. Heinz, Apr 21 2012