A104505 Triangle, read by rows, equal to the right-hand side of the triangle A084610, with row n listing the coefficients of (1+x-x^2)^n: T(n,k) = [x^(n+k)] (1+x-x^2)^n, for n>=k>=0.
1, 1, -1, -1, -2, 1, -5, 0, 3, -1, -5, 8, 2, -4, 1, 11, 15, -10, -5, 5, -1, 41, -6, -30, 10, 9, -6, 1, 29, -77, -14, 49, -7, -14, 7, -1, -125, -120, 112, 56, -70, 0, 20, -8, 1, -365, 117, 288, -126, -126, 90, 12, -27, 9, -1, -131, 770, 45, -540, 90, 228, -105, -30, 35, -10, 1, 1409, 946, -1265, -495, 858, 33, -363, 110, 55, -44
Offset: 0
Examples
Rows begin: 1; 1,-1; -1,-2,1; -5,0,3,-1; -5,8,2,-4,1; 11,15,-10,-5,5,-1; 41,-6,-30,10,9,-6,1; 29,-77,-14,49,-7,-14,7,-1; -125,-120,112,56,-70,0,20,-8,1; -365,117,288,-126,-126,90,12,-27,9,-1; -131,770,45,-540,90,228,-105,-30,35,-10,1; ...
Links
- P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
Programs
-
Mathematica
T[n_, k_] := Coefficient[(1 + x - x^2)^n, x, n + k]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 27 2019 *)
-
PARI
T(n,k)=if(n
Formula
Column k has e.g.f. exp(x)*Bessel_I(k,2*sqrt(-1)x)*(sqrt(-1))^k. - Paul Barry, Jun 17 2006
From Peter Bala, Jun 29 2015: (Start)
Matrix factorization in the Riordan group: ( 1/(1 - x), x/(1 - x) ) * ( 1/sqrt(1 + 4*x^2), (1 - sqrt(1 + 4*x^2))/(2*x) ) = A007318 * signed version of A108044.
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = (1 - x - sqrt(1 - 2*x + 5*x^2))/(2*x) and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = x^2 + x - 1. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)
Comments