cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104522 Expansion of (-1+x+3*x^2-x^3)/((x+1)(3*x-1)(x-1)^2).

Original entry on oeis.org

1, 3, 7, 19, 53, 155, 459, 1371, 4105, 12307, 36911, 110723, 332157, 996459, 2989363, 8968075, 26904209, 80712611, 242137815, 726413427, 2179240261, 6537720763, 19613162267, 58839486779, 176518460313, 529555380915, 1588666142719, 4765998428131
Offset: 0

Views

Author

Creighton Dement, Apr 20 2005

Keywords

Comments

A floretion-generated sequence relating to A081250 (Numbers n such that A081249(m)/m^2 has a local minimum for m = n).
Binomial transform starts: 1, 4, 14, 50, 184, 696, 2688, 10528, 41600, 165248, ... - Wesley Ivan Hurt, Sep 12 2014
Floretion Algebra Multiplication Program, FAMP Code: 1famforrokseq[ - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki']

Crossrefs

Programs

  • Magma
    [(5*3^n+4*(n+1)-(-1)^n)/8 : n in [0..30]]; // Wesley Ivan Hurt, Sep 12 2014
  • Maple
    A104522:=n->(5*3^n+4*(n+1)-(-1)^n)/8: seq(A104522(n), n=0..30); # Wesley Ivan Hurt, Sep 12 2014
  • Mathematica
    CoefficientList[Series[(-1 + x + 3 x^2 - x^3)/((x + 1) (3*x - 1) (x - 1)^2), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 12 2014 *)

Formula

a(n) = (1/8) * (5*3^n + 4*(n+1) - (-1)^n). - Ralf Stephan, Nov 13 2010.
a(n+2) - 2a(n+1) + a(n) = A081250(n+1) - A081250(n).
a(n) = 4*a(n-1)-2*a(n-2)-4*a(n-3)+3*a(n-4). - Wesley Ivan Hurt, Sep 12 2014