A104523 Numbers that are neither Fibonacci nor Lucas numbers.
6, 9, 10, 12, 14, 15, 16, 17, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..10000
Programs
-
Maple
lucas := proc(n::integer) if n = 0 then RETURN(2) ; elif n = 1 then RETURN(1) ; else RETURN(combinat[fibonacci](n-1)+combinat[fibonacci](n+1)) ; fi ; end : islucas := proc(i::integer) local lucn,n ; for n from 0 to i do lucn := lucas(n) ; if lucn = i then RETURN(1) ; elif lucn > i then RETURN(0) ; fi ; od : end : isfibo := proc(i::integer) local fibn,n ; for n from 0 to i+1 do fibn := combinat[fibonacci](n) ; if fibn = i then RETURN(1) ; elif fibn > i then RETURN(0) ; fi ; od : end : for n from 0 to 100 do if islucas(n) = 0 and isfibo(n) = 0 then printf("%d,",n) ; fi ; od : # R. J. Mathar, Apr 23 2006
-
Mathematica
a := {1, 3}; For[n = 3, n <= 100, n++,a=Append[a,a[[n-1]]+a[[n-2]]]]; Complement[Range[150], a, Table[Fibonacci[n], {n, 1, 100}]] (* Stefan Steinerberger, Apr 17 2006 *) Module[{nn=12,fib,luc},fib=Fibonacci[Range[nn]];luc=LucasL[Range[nn]];Complement[ Range[fib[[-1]]],luc,fib]] (* Harvey P. Dale, Mar 10 2019 *)
Extensions
More terms from Stefan Steinerberger and Atilla Bora (borabanana(AT)gmail.com), Apr 17 2006