cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104545 Number of Motzkin paths of length n having no consecutive (1,0) steps.

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 25, 55, 129, 303, 721, 1743, 4241, 10415, 25761, 64095, 160385, 403263, 1018369, 2581887, 6569089, 16767871, 42927105, 110194175, 283574017, 731427583, 1890600193, 4896499455, 12704869633, 33021750015, 85966113281
Offset: 0

Views

Author

Emeric Deutsch, Mar 14 2005

Keywords

Comments

a(n) = A104544(n,0) (n > 0).

Examples

			a(3)=3 because we have UDH, HUD and UHD, where U=(1,1), D=(1,-1) and H=(1,0) (HHH does not qualify).
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A^2)*x/A + (1 + 2^2*x*A^2 + x^2*A^4)*x^2/A^2/2 +
(1 + 3^2*x*A^2 + 3^2*x^2*A^4 + x^3*A^6)*x^3/A^3/3 +
(1 + 4^2*x*A^2 + 6^2*x^2*A^4 + 4^2*x^3*A^6 + x^4*A^8)*x^4/A^4/4 +
(1 + 5^2*x*A^2 + 10^2*x^2*A^4 + 10^2*x^3*A^6 + 5^2*x^4*A^8 + x^5*A^10)*x^5/A^5/5 + ...
		

Crossrefs

Programs

  • Maple
    G:=(1-sqrt(1-4*z^2*(1+z)^2))/2/z^2/(1+z): Gser:=series(G,z=0,35): 1,seq(coeff(Gser,z^n),n=1..31);
  • Mathematica
    Array[Sum[Binomial[2 k, k]/(k + 1) (Binomial[2 k, # - 2 k + 1] + Binomial[2 k, # - 2 k]), {k, Ceiling[#/4], (# + 1)/2}] &[# - 1] &, 31, 0] (* Michael De Vlieger, Feb 18 2020 *)
    CoefficientList[Series[(1-Sqrt[1-4x^2 (1+x)^2])/(2x^2 (1+x)),{x,0,30}],x] (* Harvey P. Dale, Mar 02 2020 *)
  • Maxima
    b(n):=sum(binomial(2*k,k)/(k+1)*(binomial(2*k,n-2*k+1)+binomial(2*k,n-2*k)),k,ceiling(n/4),(n+1)/2); a(n):=if n=0 then 1 else b(n-1); /* Vladimir Kruchinin, Mar 14 2012 */
  • PARI
    {a(n)=local(p=-1,q=2,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(p=-1,q=2,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(p=-1,q=2,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    

Formula

G.f.: (1-sqrt(1-4z^2*(1+z)^2))/(2z^2*(1+z)).
G.f. A(x) satisfies:
(1) A(x) = (1+x)*(1 + x^2*A(x)^2).
(2) A(x) = exp( Sum_{n>=1} x^n * A(x)^(-n)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * A(x)^(2*k)] ).
(3) A(x) = exp( Sum_{n>=1} x^n * A(x)^(-n)/n * [(1-x/A(x)^2)^(2*n+1) * Sum_{k>=0} C(n+k,k)^2*x^k * A(x)^(2*k)] ).
a(n+1) = sum(binomial(2*k,k)/(k+1)*(binomial(2*k,n-2*k+1)+binomial(2*k,n-2*k)),k,ceiling(n/4),(n+1)/2), a(0)=1. - Vladimir Kruchinin, Mar 14 2012
(n+2)*a(n) + (n+2)*a(n-1) + 4*(-n+1)*a(n-2) + 12*(-n+2)*a(n-3) + 12*(-n+3)*a(n-4) + 4*(-n+4)*a(n-5) = 0. - R. J. Mathar, Jul 23 2017
a(n) ~ 3^(1/4) * (1+sqrt(3))^(n + 1/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 17 2017